मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

If aikbijkcijka→=i^-k^,b→=xi^+j^+(1-x)k^,c→=yi^+xj^+(1+x-y)k^, show that abc[a→b→c→] depends om neither x nor y - Mathematics

Advertisements
Advertisements

प्रश्न

If `vec"a" = hat"i" - hat"k", vec"b" = xhat"i" + hat"j" + (1 - x)hat"k", vec"c" = yhat"i" + xhat"j" + (1 + x - y)hat"k"`, show that  `[(vec"a", vec"b", vec"c")]` depends on neither x nor y

बेरीज

उत्तर

Given `vec"a" = vec"i" - vec"k"`

`vec"b" = xvec"i" + vec"j" + (1 - x)vec"k"`

`vec"c" = yvec"i" + xvec"j" + (1 + x - y)vec"k"`

`[(vec"a", vec"b", vec"c")] = |(1, 0, -1),(x, 1, 1 - x),(y, x,11 + x - y)|`

= 1(1 + x – y) – x(1 – x) – 1(x2 - y)

= 1 + x – y – x + x2 – x2 + y

`[(vec"a", vec"b", vec"c")]` = 1

∴ Clearly `[(vec"a", vec"b", vec"c")]` depends on neither x nor y

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Applications of Vector Algebra - Exercise 6.2 [पृष्ठ २३८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 6 Applications of Vector Algebra
Exercise 6.2 | Q 8 | पृष्ठ २३८

संबंधित प्रश्‍न

Find the volume of a tetrahedron whose vertices are A(−1, 2, 3), B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4).


Find the volume of the parallelopiped whose coterminus edges are given by vectors `2hati+5hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`


Find the value of λ so that the following vector is coplanar:

\[\vec{a} = 2 \hat{i} - \hat {j} + \hat {k} , \vec{b} = \hat {i} + 2 \hat {j} - 3 \hat {k} , \vec{c} = \lambda \hat {i} + \lambda \hat {j} + 5 \hat {k}\]


Find the value of λ for which the four points with position vectors

\[-\hat { j} - \hat {k} , 4 \hat {i} + 5 \hat {j} + \lambda \hat {k} , 3 \hat {i} + 9 \hat {j} + 4 \hat {k} \text { and } - 4 \hat {i} + 4 \hat {j} + 4 \hat{k}\]

 

If four points A, B, C and D with position vectors 4 \[\hat { i} +3\] \[\hat { j} +3\] \[\hat { k} ,5\] \[\hat { i} +\] \[x\hat { j} +7\] \[\hat { k} ,5\] \[\hat { i} +3\] \[\hat { j}\] and \[7 \hat{i} + 6 \hat{j} + \hat{k}\] respectively are coplanar, then find the value of x.


\[\left[ \vec{a} \vec{b} \vec{a} \times \vec{b} \right] + \left( \vec{a} . \vec{b} \right)^2 =\]


For non-zero vectors \[\vec{a,} \vec{b} \text { and }\vec{c}\] the relation \[\left| \left( \vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|\] holds good, if


Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:

`bar"a" = - 9hat"i" + 6hat"j" + 15hat"k"` , `bar"b" = 6hat"i" - 4hat"j" - 10hat"k"`.


Determine where `bb(bara)` and `bb(barb)` are orthogonal, parallel or neither.

`bara = -3/5hati + 1/2hatj + 1/3hatk ,  barb = 5hati + 4hatj + 3hatk`


If a line has the direction ratios 4, −12, 18, then find its direction cosines


If the vectors `3hat"i" + 5hat"k", 4hat"i" + 2hat"j" - 3hat"k"` and `3hat"i" + hat"j" + 4hat"k"`  are the coterminus edges of the parallelopiped, then find the volume of the parallelopiped.


If the vectors `- 3hat"i" + 4hat"j" - 2hat"k" , hat"i" + 2hat"k"` and `hat"i" - "p"hat"j"` are coplanar, then find the value of p.


If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `(bar"u" + bar"w").[(bar"u" xx bar"v") xx (bar"v" xx bar"w")]`


Determine whether the three vectors `2hat"i" + 3hat"j" + hat"k", hat"i" - 2hat"j" + 2hat"k"` and `3hat"i" + hat"j" + 3hat"k"` are coplanar


If the vectors `"a"hat"i" + "a"hat"j" + "c"hat"k", hat"i" + hat"k"` and `"c"hat"i" + "c"hat"j" + "b"hat"k"` are coplanar, prove that c is the geometric mean of a and b


If the scalar triple product of the vectors `-3hat"i" + 7hat"j" - 3hat"k", 3hat"i" - 7hat"j" + lambdahat"k" and 7hat"i" - 5hat"j" - 5hat"j"` is 272 then λ = ______.


If `2hati + 3hatj, hati + hatj + hatk` and `λhati + 4hatj + 2hatk` taken in order are coterminous edges of a parallelopiped of volume 2 cu. units, then find the value of λ.


If `bar"u" = hat"i" - 2hat"j" + hat"k" , bar"v" = 3hat"i" + hat"k"` and `bar"w" = hat"j" - hat"k"` are given vectors, then find `[bar"u" xx bar"v"     bar"u" xx bar"w"     bar"v" xx bar"w"]`


Find the volume of the parallelopiped whose vertices are A (3, 2, −1), B (−2, 2, −3) C (3, 5, −2) and D (−2, 5, 4). 


Determine whether `\bb(bara and barb)` are orthogonal, parallel or neither.

`bara = -3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk `


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×