मराठी

If Four Points A, B, C and D with Position Vectors 4 ^ I + 3 ^ J + 3 ^ K , 5 ^ I + X ^ J + 7 ^ K , 5 ^ I + 3 ^ J and - Mathematics

Advertisements
Advertisements

प्रश्न

If four points A, B, C and D with position vectors 4 i^+3 j^+3 k^,5 i^+ xj^+7 k^,5 i^+3 j^ and 7i^+6j^+k^ respectively are coplanar, then find the value of x.

बेरीज

उत्तर

Let  OA=4i^+3j^+3k^,OB=5i^+xj^+7k^,OC=5i^+3j^ and  OD=7i^+6j^+k^.

AB=(5i^+xj^+7k^)(4i^+3j^+3k^)=i^+(x3)j^+4k^

AC=(5i^+3j^)(4i^+3j^+3k^)=i^3k^

AD=(7i^+6j^+k^)(4i^+3j^+3k^)=3i^+3j^2k^

Since the given four points are coplanar, so the vectors  AB,AC and  AD are also coplanar.

[ABACAD]=0

|1x34103332|=0

1(0+9)(x3)(2+9)+4(30)=0

97x+21+12=0

7x=42

x=6

Thus, the value of x is 6.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 26: Scalar Triple Product - Exercise 26.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 26 Scalar Triple Product
Exercise 26.1 | Q 14 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that the four points A(4, 5, 1), B(0, –1, –1), C(3, 9, 4) and D(–4, 4, 4) are coplanar.


Find λ, if the vectors a=i^+3j^+k^,b=2i^j^k^ and c=λj^+3k^  are coplanar.


Find the volume of the parallelopiped whose coterminus edges are given by vectors

2i^+3j^-4k^,5i^+7j^+5k^and4i^+5j^-2k^


Show that the four points A, B, C and D with position vectors 4i^+5j^+k^, -j^-k^, 3i^+9j^+4k^ and 4(-i^+j^+k^) respectively are coplanar


Evaluate the following:

[i^j^k^]+[j^k^i^]+[k^i^j^]


Find [abc] , when a=2i^3j^,b=i^+j^k^ and c=3i^k^


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

a=2i^3j^+4k^,b=i^+2j^k^,c=3i^j^2k^


Find the volume of the parallelopiped whose coterminous edges are represented by the vector:

a=11i^,b=2j^,c=13k^


Find the value of λ so that the following vector is coplanar:

a=2i^j^+k^,b=i^+2j^3k^,c=λi^+λj^+5k^


Find the value of λ so that the following vector is coplanar:

a=i^+2j^3k^,b=3i^+λj^+k^,c=i^+2j^+2k^


Show that the points A (−1, 4, −3), B (3, 2, −5), C (−3, 8, −5) and D (−3, 2, 1) are coplanar.


If a,b  are non-collinear vectors, then find the value of[abi^]i^+[abj^]j^+[abk^]k^.


If the vectors (sec2 A) i^+j^+k^,i^+(sec2B)j^+k^,i^+j^+(sec2C)k^ are coplanar, then find the value of cosec2 A + cosec2 B + cosec2 C.


If a,b,c are non-coplanar vectors, then find the value of a(b×c)(c×a)b+b(a×c)c(a×b).


If ra=rb=rc=0 for some non-zero vector r, then the value of [abc], is


If a,b,c are non-coplanar vectors, then a(b×c)(c×a)b+b(a×c)c(a×b) is equal to


Let a=a1i^+a2j^+a3k^,b=b1i^+b2j^+b3k^ and c=c1i^+c2j^+c3 k  be three non-zero vectors such that c is a unit vector perpendicular to both a and b. If the angle between a and b is π6, , then

|a1a2a3b1b2b3c1c2c3|2 is equal to


If [2a+4bcd]=λ[acd]+μ[bcd],  then λ + μ =


If the vectors 4i^+11j^+mk^,7i^+2j^+6k^ and i^+5j^+4k^ are coplanar, then m =


If a,b,c are three non-coplanar vectors, then (a+b+c).[(a+b)×(a+c)] equals


(a+2bc){(ab)×(abc)} is equal to


Find the value of p, if the vectors i^-2j^+k^,2i^-5j^+pk^,5i^-9j^+4k^ are coplanar.


Determine where a¯ and b¯ are orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^, b¯=5i^+4j^+3k^


If a vector has direction angles 45° and 60°, find the third direction angle.


If a=i^-2j^+3k^,b=2i^+j^-2k^,c=3i^+2j^+k^, find a(b×c)


Determine whether the three vectors 2i^+3j^+k^,i^-2j^+2k^ and 3i^+j^+3k^ are coplanar


Let a, b, c be three non-zero vectors such that c is a unit vector perpendicular to both a and b. If the angle between a and b is π6, show that [abc]2=14|a|2|b|2


If θ is the angle between the unit vectors a¯ and b¯, the cosθ=θ2 = ______.


If a,b,c are three non-coplanar vectors, then the value of a.(b×c)(c×a).b+b.(a×c)c.(a×b) is ______.


Find the volume of the parallelopiped whose coterminous edges are 2i^-3j^,i^+j^-k^ and 3i^-k^.


If u¯=i^-2j^+k^,v¯=3i^+k^ and w¯=j^-k^ are given vectors, then find [u¯×v¯   u¯×w¯   v¯×w¯]


Determine whether a¯andb¯ is orthogonal, parallel or neither.

a¯=-35i^+12j^+13k^,b¯=5i^+4j^+3k^


If u=i^-2j^+k^,r¯=3i^+k^andw=j^,k^  are given vectors, then find [u¯+w¯].[(w¯×r¯)×(r¯×w¯)]


If u¯=i^-2j^+k^, v¯=3i^+k^  and w¯=j^-k^ are given vectors, then find [u¯+w¯]·[(u¯×v¯)×(v¯×w¯)]


Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.