Advertisements
Advertisements
प्रश्न
उत्तर
We know that if any vector is perpendicular to all three sides of ∆ ABC, it must be perpendicular to the plane of ∆ ABC .
Now,
\[ \overrightarrow{AB} = \vec{b} - \vec{a} , \overrightarrow{BC} = \vec{c} - \vec{b} , \overrightarrow{CA} = \vec{a} - \vec{c} \left( Position vectors of A, B and C are \vec{a} , \vec{b} , \vec{c} \right)\]
We have
\[ \overrightarrow{AB} . ( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} )\]
\[ = \left( \vec{b} - \vec{a} \right) . \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]
\[ = \vec{b} . \left( \vec{a} \times \vec{b} \right) + \vec{b} . \left( \vec{b} \times \vec{c} \right) + \vec{b} . \left( \vec{c} \times \vec{a} \right) - \vec{a} . \left( \vec{a} \times \vec{b} \right) - \vec{a} . \left( \vec{b} \times \vec{c} \right) - \vec{a} . \left( \vec{c} \times \vec{a} \right) \left( By distributive law \right)\]
\[ = \left[ \vec{b} \vec{a} \vec{b} \right] + \left[ \vec{b} \vec{b} \vec{c} \right] + \left[ \vec{b} \vec{c} \vec{a} \right] - \left[ \vec{a} \vec{a} \vec{b} \right] - \left[ \vec{a} \vec{b} \vec{c} \right] - \left[ \vec{a} \vec{c} \vec{a} \right]\]
\[ = 0 + 0 + \left[ \vec{b} \vec{c} \vec{a} \right] - 0 - \left[ \vec{a} \vec{b} \vec{c} \right] - 0\]
\[ = 0 \left( \because \left[ \vec{b} \vec{c} \vec{a} \right] = \left[ \vec{a} \vec{b} \vec{c} \right] \right) \]
\[ \overrightarrow{BC} . ( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} )\]
\[ = \left( \vec{c} - \vec{b} \right) . \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]
\[ = \vec{c} . \left( \vec{a} \times \vec{b} \right) + \vec{c} . \left( \vec{b} \times \vec{c} \right) + \vec{c} . \left( \vec{c} \times \vec{a} \right) - \vec{b} . \left( \vec{a} \times \vec{b} \right) - \vec{b} . \left( \vec{b} \times \vec{c} \right) - \vec{b} . \left( \vec{c} \times \vec{a} \right) \left( By distributive law \right)\]
\[ = \left[ \vec{c} \vec{a} \vec{b} \right] + \left[ \vec{c} \vec{b} \vec{c} \right] + \left[ \vec{c} \vec{c} \vec{a} \right] - \left[ \vec{b} a^\to \vec{b} \right] - \left[ \vec{b} \vec{b} \vec{c} \right] - \left[ \vec{b} \vec{c} \vec{a} \right]\]
\[ = \left[ \vec{c} \vec{a} \vec{b} \right] + 0 + 0 - 0 - 0 - \left[ \vec{b} \vec{c} \vec{a} \right]\]
\[ = 0 \left( \because \left[ \vec{c} \vec{a} \vec{b} \right] = \left[ \vec{b} \vec{c} \vec{a} \right] \right) \]
Similarly,
\[ \overrightarrow{CA} . ( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} )\]
\[ = \left( \vec{a} - \vec{c} \right) . \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]
\[ = \vec{a} . \left( \vec{a} \times \vec{b} \right) + \vec{a} . \left( \vec{b} \times \vec{c} \right) + \vec{a} \left( \vec{c} \times \vec{a} \right) - \vec{c} . \left( \vec{a} \times \vec{b} \right) - \vec{c} . \left( \vec{b} \times \vec{c} \right) - \vec{c} . \left( \vec{c} \times \vec{a} \right) \left( By distributive law \right)\]
\[ = \left[ \vec{a} \vec{a} \vec{b} \right] + \left[ \vec{a} \vec{b} \vec{c} \right] + \left[ \vec{a} \vec{c} \vec{a} \right] - \left[ \vec{c} \vec{a} \vec{b} \right] - \left[ \vec{c} \vec{b} \vec{c} \right] - \left[ \vec{c} \vec{c} \vec{a} \right]\]
\[ = 0 + \left[ \vec{a} \vec{b} \vec{c} \right] + 0 - \left[ \vec{c} \vec{a} \vec{b} \right] - 0 - 0\]
\[ = 0 \left( \because \left[ \vec{c} \vec{a} \vec{b} \right] = \left[ \vec{a} \vec{b} \vec{c} \right] \right) \]
\[\text {Hence, vector } \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\text { is perpendicular to all sides of ∆ ABC and also perpendicular to the plane of ∆ ABC } .\]
APPEARS IN
संबंधित प्रश्न
Prove that the volume of a parallelopiped with coterminal edges as ` bara ,bar b , barc `
Hence find the volume of the parallelopiped with coterminal edges `bar i+barj, barj+bark `
If `bar c = 3bara- 2bar b ` Prove that `[bar a bar b barc]=0`
Prove that, for any three vector `veca,vecb,vecc [vec a+vec b,vec b+vec c,vecc+veca]=2[veca vecb vecc]`
Find the volume of the parallelopiped whose coterminus edges are given by vectors
`2hati+3hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`
Show that the four points A, B, C and D with position vectors `4hati + 5hatj + hatk`, `-hatj-hatk`, `3hati + 9hatj + 4hatk` and `4(-hati + hatj + hatk)` respectively are coplanar
Prove that a necessary and sufficient condition for three vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that \[l \vec{a} + m \vec{b} + n \vec{c} = \vec{0} .\]
Evaluate the following:
\[\left[ 2 \hat{i}\hat{ j}\ \hat{k}\right] + \left[\hat{i}\hat{ k}\hat {j} \right] + \left[\hat{ k}\hat{ j} 2\hat{ i} \right]\]
Show of the following triad of vector is coplanar:
\[\vec{a} = \hat {i} + 2 \hat{j} - \hat {k} , \vec{b} = 3 \hat {i} + 2 \hat{j} + 7 \hat {k} , \vec{c} = 5 \hat {i} + 6 \hat { j} + 5 \hat {k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = 2 \hat{i} - \hat {j} + \hat {k} , \vec{b} = \hat {i} + 2 \hat {j} - 3 \hat {k} , \vec{c} = \lambda \hat {i} + \lambda \hat {j} + 5 \hat {k}\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat {i} + 3 \hat {j} , \vec{b} = 5 \hat {k} , \vec{c} = \lambda \hat {i} - \hat {j}\]
Find the value of λ for which the four points with position vectors
\[-\hat { j} - \hat {k} , 4 \hat {i} + 5 \hat {j} + \lambda \hat {k} , 3 \hat {i} + 9 \hat {j} + 4 \hat {k} \text { and } - 4 \hat {i} + 4 \hat {j} + 4 \hat{k}\]
If \[\left[ 3 \vec{a} + 7 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then find the value of λ + μ.
If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then find the value of \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\].
Find \[\vec{a} . \left( \vec{b} \times \vec{c} \right)\], if \[\vec{a} = 2 \hat {i} + \hat {j} + 3 \hat {k} , \vec{b} = - \hat {i} + 2 \hat {j} + \hat {k}\] and \[\vec{c} = 3 \hat { i} + \hat {j} + 2 \hat {k}\].
If \[\vec{a}\] lies in the plane of vectors \[\vec{b} \text { and } \vec{c}\], then which of the following is correct?
If \[\vec{a,} \vec{b,} \vec{c}\] are three non-coplanar mutually perpendicular unit vectors, then \[\left[ \vec{a} \vec{b} \vec{c} \right],\] is
If \[\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0\] for some non-zero vector \[\vec{r} ,\] then the value of \[\left[ \vec{a} \vec{b} \vec{c} \right],\] is
If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\] is equal to
If \[\vec{a} = 2\hat{ i} - 3 \hat { j} + 5 \hat { k} , \vec{b} = 3 \hat {i} - 4 \hat {j} + 5 \hat {k} \text { and } \vec{c} = 5\hat { i } - 3 \hat {j}- 2 \hat{k},\] then the volume of the parallelopiped with conterminous edges \[\vec{a} + \vec{b,} \vec{b} + \vec{c,} \vec{c} + \vec{a}\] is
If \[\left[ 2 \vec{a} + 4 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then λ + μ =
Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:
`bar"a" = 4hat"i" - hat"j" + 6hat"k"` , `bar"b" = 5hat"i" - 2hat"j" + 4hat"k"`
If a line has the direction ratios 4, −12, 18, then find its direction cosines
If the vectors `3hat"i" + 5hat"k", 4hat"i" + 2hat"j" - 3hat"k"` and `3hat"i" + hat"j" + 4hat"k"` are the coterminus edges of the parallelopiped, then find the volume of the parallelopiped.
If the vectors `- 3hat"i" + 4hat"j" - 2hat"k" , hat"i" + 2hat"k"` and `hat"i" - "p"hat"j"` are coplanar, then find the value of p.
If `vec"a", vec"b", vec"c"` are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of `(vec"a" + vec"b") * (vec"b" xx vec"c") + (vec"b" + vec"c")* (vec"c" xx vec"a") + (vec"c" + vec"a") * (vec"a" xx vec"b")`
The volume of tetrahedron whose vertices are A(3, 7, 4), B(5, -2, 3), C(-4, 5, 6), D(1, 2, 3) is ______.
If θ is the angle between the unit vectors `bar"a"` and `bar"b"`, the `cos theta = theta/2` = ______.
Determine whether `bara and barb` are orthogonal, parallel or neither.
`bara = - 3/5 hati+ 1/2 hatj + 1/3 hatk , barb= 5hati + 4hatj + 3hatk`
Determine whether `bara` and `barb` are orthogonal, parallel or neither.
`bara = - 3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk`
Determine whether `bb(bara and barb)` are orthogonal, parallel or neither.
`bar a = -3/5hati + 1/2hatj + 1/3hatk, barb = 5hati + 4hatj + 3hatk`
If `2hati + 3hatj, hati + hatj + hatk` and `λhati + 4hatj + 2hatk` taken in order are coterminous edges of a parallelopiped of volume 2 cu. units, then find the value of λ.
If `barc = 3bara - 2barb` and `[bara barb + barc bara + barb + barc]` = 0 then prove that `[bara barb barc]` = 0
If a vector has direction angles 45ºand 60º find the third direction angle.
Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C (2, 1, 3) and D(−1, −2, 4).
Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4).