Advertisements
Advertisements
प्रश्न
Find the angle between the lines whose direction cosines l, m, n satisfy the equations 5l + m + 3n = 0 and 5mn − 2nl + 6lm = 0.
उत्तर
Given, 5l + m + 3n = 0 ...(1)
and 5mn − 2nl + 6lm = 0 ...(2)
From (1), m = − (5l + 3n)
Putting the value of m in equation (2), we get,
−5(5l + 3n)n − 2nl − 6l(5l + 3n) = 0
∴ − 25ln − 15n2 − 2nl − 30l2 − 18ln = 0
∴ − 30l2 − 45ln − 15n2 = 0
∴ 2l2 + 3ln + n2 = 0
∴ 2l2 + 2ln + ln + n2 = 0
∴ 2l(l + n) + n(l + n) = 0
∴ (l + n)(2l + n) = 0
∴ l + n = 0 or 2l + n = 0
∴ l = − n or n = − 2l
Now, m = − (5l + 3n), therefore, if l = − n,
m = − (− 5n + 3n) = 2n
∴ − l = `"m"/2 = "n"`
∴ `"l"/-1 = "m"/2 = "n"/1`
∴ the direction ratios of the first line are
a1 = −1, b1 = 2, c1 = 1
If n = − 2l, m = −(5l − 6l) = l
∴ l = m = `"n"/-2`
∴ `"l"/1 = "m"/1 = "n"/-2`
∴ the direction ratios of the second line are
a2 = 1, b2 = 1, c2 = − 2
Let θ be the angle between the lines.
Then cos θ = `|("a"_1"a"_2 + "b"_1"b"_2 + "c"_1"c"_2)/(sqrt("a"_1^2 + "b"_1^2 + "c"_1^2).sqrt ("a"_2^2 + "b"_2^2 + "c"_2^2))|`
`= |((- 1)(1) + 2(1) + 1(-2))/(sqrt((- 1)^2 + 2^2 + 1^2).sqrt(1^2 + 1^2 + (- 2)^2))|`
`= |(- 1 + 2 - 2)/(sqrt6.sqrt6)|`
`= |(- 1)/6|`
= `1/6`
∴ θ = cos−1 `(1/6)`
Notes
Answer in the textbook is incorrect.
संबंधित प्रश्न
If A, B, C, D are (1, 1, 1), (2, 1, 3), (3, 2, 2), (3, 3, 4) respectively, then find the volume of parallelopiped with AB, AC and AD as the concurrent edges.
If `bar c = 3bara- 2bar b ` Prove that `[bar a bar b barc]=0`
Prove that, for any three vector `veca,vecb,vecc [vec a+vec b,vec b+vec c,vecc+veca]=2[veca vecb vecc]`
Show that the four points A(4, 5, 1), B(0, –1, –1), C(3, 9, 4) and D(–4, 4, 4) are coplanar.
Find the volume of the parallelopiped whose coterminus edges are given by vectors `2hati+5hatj-4hatk, 5hati+7hatj+5hatk and 4hati+5hatj-2hatk`
Find \[\left[ \vec{a} \vec{b} \vec{c} \right]\] , when \[\vec{a} =\hat{ i} - 2 \hat{j} + 3 \hat{k} , \vec{b} = 2 \hat{i} + \hat{j} - \hat{k}\text{ and } \vec{c} = \hat{j} + \hat{k}\]
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - \hat{k} , \vec{c} = 3 \hat{i} - \hat{j} - 2 \hat{k}\]
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = 11 \hat{i} , \vec{b} = 2 \hat{j} , \vec{c} = 13 \hat{k}\]
Find the volume of the parallelopiped whose coterminous edges are represented by the vector:
\[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} =\hat{ i} - \hat{j} + \hat{k} , \vec{c} = \hat{i} + 2 \hat{j} - \hat{k}\]
Show of the following triad of vector is coplanar:
\[\vec{a} = - 4 \hat{i} - 6 \hat{j} - 2 \hat{k} , \vec{b} = -\hat{ i} + 4 \hat{j} + 3 \hat{k} , \vec{c} = - 8 \hat{i} - \hat{j} + 3 \hat{k}\]
Show of the following triad of vector is coplanar:
\[\hat{a} = \hat{i} - 2 \hat {j} + 3 \hat {k} , \hat {b} = - 2 \hat {i} + 3 \hat {j} - 4 \hat { k}, \hat {c} = \hat { i} - 3 \hat { j} + 5 \hat { k }\]
Find the value of λ so that the following vector is coplanar:
\[\vec{a} = \hat {i} + 3 \hat {j} , \vec{b} = 5 \hat {k} , \vec{c} = \lambda \hat {i} - \hat {j}\]
Find the value of λ for which the four points with position vectors
\[-\hat { j} - \hat {k} , 4 \hat {i} + 5 \hat {j} + \lambda \hat {k} , 3 \hat {i} + 9 \hat {j} + 4 \hat {k} \text { and } - 4 \hat {i} + 4 \hat {j} + 4 \hat{k}\]
Prove that: \[\left( \vec{a} - \vec{b} \right) \cdot \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\} = 0\]
\[\text {Let } \vec{a} = \hat {i} + \hat {j} + \hat {k} , \vec{b} = \hat {i} \text{and} \hat {c} = c_1 \hat{i} + c_2 \hat {j} + c_3 \hat {k} . \text {Then},\]
If c1 = 1 and c2 = 2, find c3 which makes \[\vec{a,} \vec{b} \text { and } \vec{c}\] coplanar.
Write the value of \[\left[ 2 \hat { i } \ 3 \hat { j }\ 4 \hat { k } \right] .\]
Write the value of \[\left[ \hat {i} + \hat {j} \ \hat {j} + \hat {k} \ \hat {k} + \hat {i} \right] .\]
Find the values of 'a' for which the vectors
\[\vec{\alpha} = \hat {i} + 2 \hat {j} + \hat {k} , \vec{\beta} = a \hat {i} + \hat {j} + 2 \hat {k} \text { and } \vec{\gamma} = \hat {i} + 2 \hat {j} + a \hat { k }\] are coplanar.
Find the volume of the parallelopiped with its edges represented by the vectors \[\hat {i} + \hat {j} , \hat {i} + 2 \hat {j} \text { and } \hat {i} + \hat {j} + \pi k .\]
If the vectors (sec2 A) \[\hat {i} + \hat {j} + \hat {k} , \hat {i} + \left( \sec^2 B \right) \hat {j} + \hat {k} , \hat {i} + \hat {j} + \left( \sec^2 C \right) \hat {k}\] are coplanar, then find the value of cosec2 A + cosec2 B + cosec2 C.
For any two vectors \[\vec{a} \text { and } \vec{b}\] of magnitudes 3 and 4 respectively, write the value of \[\left[ \vec{a} \vec{b} \vec{a} \times \vec{b} \right] + \left( \vec{a} \cdot \vec{b} \right)^2 .\]
If \[\vec{a,} \vec{b,} \vec{c}\] are non-coplanar vectors, then find the value of \[\frac{\vec{a} \cdot \left( \vec{b} \times \vec{c} \right)}{\left( \vec{c} \times \vec{a} \right) \cdot \vec{b}} + \frac{\vec{b} \cdot \left( \vec{a} \times \vec{c} \right)}{\vec{c} \cdot \left( \vec{a} \times \vec{b} \right)}\].
Find \[\vec{a} . \left( \vec{b} \times \vec{c} \right)\], if \[\vec{a} = 2 \hat {i} + \hat {j} + 3 \hat {k} , \vec{b} = - \hat {i} + 2 \hat {j} + \hat {k}\] and \[\vec{c} = 3 \hat { i} + \hat {j} + 2 \hat {k}\].
If \[\vec{a}\] lies in the plane of vectors \[\vec{b} \text { and } \vec{c}\], then which of the following is correct?
For any three vectors \[\vec{a,} \vec{b,} \vec{c}\] the expression \[\left( \vec{a} - \vec{b} \right) . \left\{ \left( \vec{b} - \vec{c} \right) \times \left( \vec{c} - \vec{a} \right) \right\}\] equals
If \[\vec{a} = 2\hat{ i} - 3 \hat { j} + 5 \hat { k} , \vec{b} = 3 \hat {i} - 4 \hat {j} + 5 \hat {k} \text { and } \vec{c} = 5\hat { i } - 3 \hat {j}- 2 \hat{k},\] then the volume of the parallelopiped with conterminous edges \[\vec{a} + \vec{b,} \vec{b} + \vec{c,} \vec{c} + \vec{a}\] is
If \[\left[ 2 \vec{a} + 4 \vec{b} \vec{c} \vec{d} \right] = \lambda\left[ \vec{a} \vec{c} \vec{d} \right] + \mu\left[ \vec{b} \vec{c} \vec{d} \right],\] then λ + μ =
If the vectors \[4 \hat { i} + 11 \hat {j} + m \hat {k} , 7 \hat { i} + 2 \hat { j} + 6 \hat {k} \text { and } \hat {i} + 5 \hat {j} + 4 \hat {k}\] are coplanar, then m =
\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{b} + \vec{c} \right) \times \left( \vec{a} + \vec{b} + \vec{c} \right) =\]
\[\left( \vec{a} + 2 \vec{b} - \vec{c} \right) \cdot \left\{ \left( \vec{a} - \vec{b} \right) \times \left( \vec{a} - \vec{b} - \vec{c} \right) \right\}\] is equal to
Show that the vectors `hat (i) - 2 hat(j) + 3 hat (k), - 2 hat(i) + 3 hat(j) - 4 hat(k) " and " hat(i) - 3 hat(j) + 5 hat(k) ` are coplanar.
Determine where `bb(bara)` and `bb(barb)` are orthogonal, parallel or neither.
`bara = -3/5hati + 1/2hatj + 1/3hatk , barb = 5hati + 4hatj + 3hatk`
Determine where `bar"a"` and `bar"b"` are orthogonal, parallel or neithe:
`bar"a" = 4hat"i" - hat"j" + 6hat"k"` , `bar"b" = 5hat"i" - 2hat"j" + 4hat"k"`
Prove by vector method, that the angle subtended on semicircle is a right angle.
If a vector has direction angles 45° and 60°, find the third direction angle.
If a line has the direction ratios 4, −12, 18, then find its direction cosines
Find `bar"a".(bar"b" xx bar"c")` if `bar"a" = 3hat"i" - hat"j" + 4hat"k" , bar"b" = 2hat"i" + 3hat"j" - hat"k"` and `bar"c" = - 5hat"i" + 2hat"j" + 3hat"k"`
If the vectors `- 3hat"i" + 4hat"j" - 2hat"k" , hat"i" + 2hat"k"` and `hat"i" - "p"hat"j"` are coplanar, then find the value of p.
Find the altitude of a parallelepiped determined by the vectors `vec"a" = - 2hat"i" + 5hat"j" + 3hat"k", vec"b" = hat"i" + 3hat"j" - 2hat"k"` and `vec"c" = - vec"i" + vec"j" + 4vec"k"` if the base is taken as the parallelogram determined by `vec"b"` and `vec"c"`
Determine whether the three vectors `2hat"i" + 3hat"j" + hat"k", hat"i" - 2hat"j" + 2hat"k"` and `3hat"i" + hat"j" + 3hat"k"` are coplanar
Ler `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = hat"i"` and `vec"c" = "c"_1hat"i" + "c"_2hat"j" + "c"_3hat"k"`. If c1 = 1 and c2 = 2. find c3 such that `vec"a", vec"b"` and `vec"c"` are coplanar
Let `vec"a", vec"b", vec"c"` be three non-zero vectors such that `vec"c"` is a unit vector perpendicular to both `vec"a"` and `vec"b"`. If the angle between `vec"a"` and `vec"b"` is `pi/6`, show that `[(vec"a", vec"b", vec"c")]^2 = 1/4|vec"a"|^2|vec"b"|^2`
If the scalar triple product of the vectors `-3hat"i" + 7hat"j" - 3hat"k", 3hat"i" - 7hat"j" + lambdahat"k" and 7hat"i" - 5hat"j" - 5hat"j"` is 272 then λ = ______.
If the volume of tetrahedron whose vertices are A(0, 1, 2), B(2, -3, 0), C(1, 0, 2) and D(-2,-3,lambda) is `7/3` cu.units, then the value of λ is ______.
Let `bar"a", bar"b", bar"c"` be three vectors such that `bar"a" ≠ 0`, and `bar"a" xx bar"b" = 2bar"a" xx bar"c", |bar"a"| = |bar"c"| = 1, |bar"b"| = 4` and `|bar"b" xx bar"c"| = sqrt(15)`. If `bar"b" - 2bar"c" = lambdabar"a"`, then λ is equal to ______.
If θ is the angle between the unit vectors `bar"a"` and `bar"b"`, the `cos theta = theta/2` = ______.
If `veca, vecb, vecc` are three non-coplanar vectors, then the value of `(veca.(vecb xx vecc))/((vecc xx veca).vecb) + (vecb.(veca xx vecc))/(vecc.(veca xx vecb))` is ______.
Let v = `2hati + hatj - hatk` and w = `hati + 3hatk`. If u is a unit vector, then maximum value of scalar triple product [u v w] is ______.
Prove that the volume of a tetrahedron with coterminus edges `overlinea, overlineb` and `overlinec` is `1/6[(overlinea, overlineb, overlinec)]`.
Hence, find the volume of tetrahedron whose coterminus edges are `overlinea = hati + 2hatj + 3hatk, overlineb = -hati + hatj + 2hatk` and `overlinec = 2hati + hatj + 4hatk`.
Determine whether `bara and barb` are orthogonal, parallel or neither.
`bara = - 3/5 hati+ 1/2 hatj + 1/3 hatk , barb= 5hati + 4hatj + 3hatk`
Determine whether `bara` and `barb` are orthogonal, parallel or neither.
`bara = - 3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk`
Find the volume of the parallelopiped whose vertices are A (3, 2, −1), B (−2, 2, −3) C (3, 5, −2) and D (−2, 5, 4).
If a vector has direction angles 45ºand 60º find the third direction angle.
Determine whether `\bb(bara and barb)` are orthogonal, parallel or neither.
`bara = -3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5hati + 4hatj + 3hatk `
Determine whether `bara and barb` are orthogonal, parallel or neither.
`bara = -3/5 hati + 1/2 hatj + 1/3 hatk, barb = 5 hati + 4 hatj + 3 hatk`
Find the volume of a tetrahedron whose vertices are A(−1, 2, 3) B(3, −2, 1), C(2, 1, 3) and D(−1, −2, 4).