मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Let A(a¯) and B(b¯) are any two points in the space and RrR(r¯) be a point on the line segment AB dividing it internally in the ratio m : n, then prove that r¯=mb¯+na¯m+n - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Let `A (bara)` and `B (barb)` are any two points in the space and `"R"(bar"r")` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r = (mbarb + nbara)/(m + n) `

बेरीज

उत्तर

R is a point on the line segment AB(A – R – B) and `bar("AR")` and `bar("RB")` are in the same direction.

Point R divides AB internally in the ratio m : n

∴ `("AR")/("RB") = m/n`

∴ n(AR) = m(RB)

As `n(bar("AR"))` and `m(bar("RB"))` have same direction and magnitude,

`n(bar("AR")) = m(bar("RB"))`

∴ `n(bar("OR") - bar("OA")) = m(bar("OB") - bar("OR"))`

∴ `n(vecr - veca) = m(vecb - vecr)`

∴ `nvecr - nveca = mvecb - mvecr`

∴ `mvecr + nvecr = mvecb + nveca`

∴ `(m + n)vecr = mvecb + nveca`

∴ `vecr = (mvecb + nveca)/(m + n)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.5: Vectors and Three Dimensional Geometry - Long Answers III

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If  `bar p = hat i - 2 hat j + hat k and bar q = hat i + 4 hat j - 2 hat k` are position vector (P.V.) of points P and Q, find the position vector of the point R which divides segment PQ internally in the ratio 2:1

 

By vector method prove that the medians of a triangle are concurrent.


Find the coordinate of the point P where the line through A(3, –4, –5) and B(2, –3, 1) crosses the plane passing through three points L(2, 2, 1), M(3, 0, 1) and N(4, –1, 0).
Also, find the ratio in which P divides the line segment AB.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `P(2veca + vecb)` and `Q(veca - 3vecb)` externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.


In a triangle OAB,\[\angle\]AOB = 90º. If P and Q are points of trisection of AB, prove that \[{OP}^2 + {OQ}^2 = \frac{5}{9} {AB}^2\]


(Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 


Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.


Prove using vectors: The quadrilateral obtained by joining mid-points of adjacent sides of a rectangle is a rhombus. 


Prove that the diagonals of a rhombus are perpendicular bisectors of each other. 


Prove that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square. 


If AD is the median of ∆ABC, using vectors, prove that \[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\] 


If the median to the base of a triangle is perpendicular to the base, then triangle is isosceles. 


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and  `- 5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3 : 2 is externally.


Find the position vector of midpoint M joining the points L(7, –6, 12) and N(5, 4, –2).


If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find

  1. the ratio in which the point C divides the line segment AB
  2. the values of p and q.

The position vector of points A and B are `6bar"a" + 2bar"b"` and `bar"a" - 3bar"b"`. If the point C divides AB in the ratio 3 : 2, show that the position vector of C is `3bar"a" - bar"b"`.


Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.


Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.


Prove that the median of a trapezium is parallel to the parallel sides of the trapezium and its length is half of the sum of the lengths of the parallel sides.


If the centroid of a tetrahedron OABC is (1, 2, - 1) where A(a, 2, 3), B(1, b, 2), C(2, 1, c), find the distance of P(a, b, c) from origin.


Find the centroid of tetrahedron with vertices K(5, −7, 0), L(1, 5, 3), M(4, −6, 3), N(6, −4, 2)


The points A, B, C have position vectors `bar"a", bar"b" and bar"c"` respectively. The point P is the midpoint of AB. Find the vector `bar"PC"` in terms of `bar"a", bar"b", bar"c"`.


If D, E, F are the midpoints of the sides BC, CA, AB of a triangle ABC, prove that `bar"AD" + bar"BE" + bar"CF" = bar0`.


Find the volume of a parallelopiped whose coterimus edges are represented by the vectors `hat"i" + hat"k", hat"i" + hat"k", hat"i" + hat"j"`. Also find volume of tetrahedron having these coterminus edges.


If `bara, barb` and `barc` are position vectors of the points A, B, C respectively and `5bara - 3barb - 2barc = bar0`, then find the ratio in which the point C divides the line segement BA.


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `-5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3:2
(i) internally
(ii) externally


If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r


Prove that medians of a triangle are concurrent


Prove that altitudes of a triangle are concurrent


Prove that the angle bisectors of a triangle are concurrent


Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4)


If A(1, 3, 2), B(a, b, - 4) and C(5, 1, c) are the vertices of triangle ABC and G(3, b, c) is its centroid, then


Let G be the centroid of a Δ ABC and O be any other point in that plane, then OA + OB + OC + CG = ?


In a quadrilateral ABCD, M and N are the mid-points of the sides AB and CD respectively. If AD + BC = tMN, then t = ____________.


In a triangle ABC, if `1/(a + c) + 1/(b + c) = 3/(a + b + c)` then angle C is equal to ______


If G(3, -5, r) is centroid of triangle ABC where A(7, - 8, 1), B(p, q, 5) and C(q + 1, 5p, 0) are vertices of a triangle then values of p, q, rare respectively.


If P(2, 2), Q(- 2, 4) and R(3, 4) are the vertices of Δ PQR then the equation of the median through vertex R is ______.


If the position vectors of points A and B are `hati + 8hatj + 4hatk` and `7hati + 2hatj - 8hatk`, then what will be the position vector of the midpoint of AB?


The image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3` is ______ 


If the orthocentre and circumcentre of a triangle are (-3, 5, 1) and (6, 2, -2) respectively, then its centroid is ______


If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______


If `3bar"a" + 5bar"b" = 8bar"c"`, then A divides BC in tbe ratio ______.


The co-ordinates of the points which divides line segment joining the point A(2, –6, 8) and B(–1, 3,–4) internally in the ratio 1: 3' are ______.


In ΔABC, P is the midpoint of BC, Q divides CA internally in the ratio 2:1 and R divides AB externally in the ratio 1:2, then ______.


What is the midpoint of the vector joining the point P(2, 3, 4) and Q(4, 1, –2)?


M and N are the mid-points of the diagonals AC and BD respectively of quadrilateral ABCD, then AB + AD + CB + CD is equal to ______.


If G(g), H(h) and (p) are centroid orthocentre and circumcentre of a triangle and xp + yh + zg = 0, then (x, y, z) is equal to ______.


If `overlinea, overlineb, overlinec` are the position vectors of the points A, B, C respectively and `5overlinea + 3overlineb - 8overlinec = overline0` then find the ratio in which the point C divides the line segment AB.


The position vectors of three consecutive vertices of a parallelogram ABCD are `A(4hati + 2hatj - 6hatk), B(5hati - 3hatj + hatk)`, and `C(12hati + 4hatj + 5hatk)`. The position vector of D is given by ______.


The position vector of points A and B are `6 bar "a" + 2 bar "b" and bar "a" - 3 bar"b"`. If the point C divided AB in the ratio 3 : 2, show that the position vector of C is `3 bar "a" - bar "b".`


The position vector of points A and B are `6bara +2barb ` and `bara-3barb `.If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara-barb` .


If `bara, barb` and `barr` are position vectors of the points A, B and R respectively and R divides the line segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.


AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:

`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`


If `bara, barb, barc` are the position vectors of the points A, B, C respectively and `5 bar a - 3 bar b - 2 bar c = bar 0`, then find the ratio in which the point C divides the line segment BA.


The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.


The position vector of points A and B are `6bara + 2 barb` and `bara-3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara -barb`.


The position vector of points A and B are `6 bara + 2barb and bara - 3barb.` If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara - barb.`


The position vector of points A and B are `6 bara + 2 barb and bara - 3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3 bara - barb`.


The position vector of points A and B are 6`bara + 2barb and bara - 3barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is 3`bara - barb`.  


The position vectors of points A and B are 6`bara` + 2`barb` and `bara - 3barb`. If the point C divides AB in the ratio 3:2, then show that the position vector of C is 3`bara - b`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×