मराठी

If Ad is the Median of ∆Abc, Using Vectors, Prove that a B 2 + a C 2 = 2 ( a D 2 + C D 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

If AD is the median of ∆ABC, using vectors, prove that \[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\] 

बेरीज

उत्तर

 

Taking A as the origin, let the position vectors of B and C be \[\vec{b}\] and \[\vec{c}\] respectively.  

It is given that AD is the median of ∆ABC. 
∴ Position vector of mid-point of BC = \[\vec{AD} = \frac{\vec{b} + \vec{c}}{2}\]................(Mid-point formula) 

Now, 

\[{AB}^2 + {AC}^2 = \left| \vec{AB} \right|^2 + \left| \vec{AC} \right|^2 = \left| \vec{b} \right|^2 + \left| \vec{c} \right|^2\] 

Also, 

\[2\left( {AD}^2 + {CD}^2 \right)\]
\[ = 2\left( \left| \vec{AD} \right|^2 + \left| \vec{CD} \right|^2 \right)\]
\[ = 2\left[ \left( \frac{\vec{b} + \vec{c}}{2} \right) . \left( \frac{\vec{b} + \vec{c}}{2} \right) + \left( \frac{\vec{b} + \vec{c}}{2} - \vec{c} \right) . \left( \frac{\vec{b} + \vec{c}}{2} - \vec{c} \right) \right]\]
\[ = 2\left[ \left( \frac{\vec{b} + \vec{c}}{2} \right) . \left( \frac{\vec{b} + \vec{c}}{2} \right) + \left( \frac{\vec{b} - \vec{c}}{2} \right) . \left( \frac{\vec{b} - \vec{c}}{2} \right) \right]\]
\[ = \frac{\left| \vec{b} \right|^2 + 2 \vec{b} . \vec{c} + \left| \vec{c} \right|^2}{2} + \frac{\left| \vec{b} \right|^2 - 2 \vec{b} . \vec{c} + \left| \vec{c} \right|^2}{2}\]
\[ = \frac{2 \left| \vec{b} \right|^2 + 2 \left| \vec{c} \right|^2}{2}\]
\[ = \left| \vec{b} \right|^2 + \left| \vec{c} \right|^2 . . . . . \left( 2 \right)\] 

From (1) and (2), we have 

\[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\]

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - Exercise 24.2 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
Exercise 24.2 | Q 8 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If  `bar p = hat i - 2 hat j + hat k and bar q = hat i + 4 hat j - 2 hat k` are position vector (P.V.) of points P and Q, find the position vector of the point R which divides segment PQ internally in the ratio 2:1

 

Find the coordinate of the point P where the line through A(3, –4, –5) and B(2, –3, 1) crosses the plane passing through three points L(2, 2, 1), M(3, 0, 1) and N(4, –1, 0).
Also, find the ratio in which P divides the line segment AB.


If the origin is the centroid of the triangle whose vertices are A(2, p, –3), B(q, –2, 5) and C(–5, 1, r), then find the values of p, q, r.


Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. 


(Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 


Prove using vectors: The quadrilateral obtained by joining mid-points of adjacent sides of a rectangle is a rhombus. 


Prove that the diagonals of a rhombus are perpendicular bisectors of each other. 


If the median to the base of a triangle is perpendicular to the base, then triangle is isosceles. 


Let `A (bara)` and `B (barb)` are any two points in the space and `"R"(bar"r")` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r = (mbarb + nbara)/(m + n) `


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hati - hatj + 3hatk`  and `- 5hati + 2hatj - 5hatk` in the ratio 3:2 is internally.


If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find

  1. the ratio in which the point C divides the line segment AB
  2. the values of p and q.

The position vector of points A and B are `6bar"a" + 2bar"b"` and `bar"a" - 3bar"b"`. If the point C divides AB in the ratio 3 : 2, show that the position vector of C is `3bar"a" - bar"b"`.


If two of the vertices of a triangle are A (3, 1, 4) and B(− 4, 5, −3) and the centroid of the triangle is at G (−1, 2, 1), then find the coordinates of the third vertex C of the triangle.


In Δ OAB, E is the midpoint of OB and D is the point on AB such that AD : DB = 2 : 1. If OD and AE intersect at P, then determine the ratio OP : PD using vector methods.


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `-5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3:2
(i) internally
(ii) externally


If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c


If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r


Prove that medians of a triangle are concurrent


Prove that altitudes of a triangle are concurrent


P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then `overline"OA" + overline"OB" + overline"OC" + overline"OD"` = ______ 


If P(2, 2), Q(- 2, 4) and R(3, 4) are the vertices of Δ PQR then the equation of the median through vertex R is ______.


If G and G' are the centroids of the triangles ABC and A'B'C', then `overline("A""A"^') + overline("B""B"^') + overline("C""C"^')` is equal to ______ 


The image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3` is ______ 


If the orthocentre and circumcentre of a triangle are (-3, 5, 1) and (6, 2, -2) respectively, then its centroid is ______


If M and N are the midpoints of the sides BC and CD respectively of a parallelogram ABCD, then `overline(AM) + overline(AN)` = ______


If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______


If `3bar"a" + 5bar"b" = 8bar"c"`, then A divides BC in tbe ratio ______.


Using vector method, prove that the perpendicular bisectors of sides of a triangle are concurrent.


Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be the third point on the line AB dividing the segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.


AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:

`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`


The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.


The position vector of points A and B are `6bara + 2 barb` and `bara-3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara -barb`.


The position vector of points A and B are `6 bara + 2barb and bara - 3barb.` If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara - barb.`


The position vector of points A and B are `6 bara + 2 barb and bara - 3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3 bara - barb`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×