Advertisements
Advertisements
प्रश्न
If AD is the median of ∆ABC, using vectors, prove that \[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\]
उत्तर
Taking A as the origin, let the position vectors of B and C be \[\vec{b}\] and \[\vec{c}\] respectively.
It is given that AD is the median of ∆ABC.
∴ Position vector of mid-point of BC = \[\vec{AD} = \frac{\vec{b} + \vec{c}}{2}\]................(Mid-point formula)
Now,
\[{AB}^2 + {AC}^2 = \left| \vec{AB} \right|^2 + \left| \vec{AC} \right|^2 = \left| \vec{b} \right|^2 + \left| \vec{c} \right|^2\]
Also,
\[2\left( {AD}^2 + {CD}^2 \right)\]
\[ = 2\left( \left| \vec{AD} \right|^2 + \left| \vec{CD} \right|^2 \right)\]
\[ = 2\left[ \left( \frac{\vec{b} + \vec{c}}{2} \right) . \left( \frac{\vec{b} + \vec{c}}{2} \right) + \left( \frac{\vec{b} + \vec{c}}{2} - \vec{c} \right) . \left( \frac{\vec{b} + \vec{c}}{2} - \vec{c} \right) \right]\]
\[ = 2\left[ \left( \frac{\vec{b} + \vec{c}}{2} \right) . \left( \frac{\vec{b} + \vec{c}}{2} \right) + \left( \frac{\vec{b} - \vec{c}}{2} \right) . \left( \frac{\vec{b} - \vec{c}}{2} \right) \right]\]
\[ = \frac{\left| \vec{b} \right|^2 + 2 \vec{b} . \vec{c} + \left| \vec{c} \right|^2}{2} + \frac{\left| \vec{b} \right|^2 - 2 \vec{b} . \vec{c} + \left| \vec{c} \right|^2}{2}\]
\[ = \frac{2 \left| \vec{b} \right|^2 + 2 \left| \vec{c} \right|^2}{2}\]
\[ = \left| \vec{b} \right|^2 + \left| \vec{c} \right|^2 . . . . . \left( 2 \right)\]
From (1) and (2), we have
\[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the coordinate of the point P where the line through A(3, –4, –5) and B(2, –3, 1) crosses the plane passing through three points L(2, 2, 1), M(3, 0, 1) and N(4, –1, 0).
Also, find the ratio in which P divides the line segment AB.
Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
Prove using vectors: The quadrilateral obtained by joining mid-points of adjacent sides of a rectangle is a rhombus.
Prove that the diagonals of a rhombus are perpendicular bisectors of each other.
Prove that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square.
In a quadrilateral ABCD, prove that \[{AB}^2 + {BC}^2 + {CD}^2 + {DA}^2 = {AC}^2 + {BD}^2 + 4 {PQ}^2\] where P and Q are middle points of diagonals AC and BD.
Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `- 5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3 : 2 is externally.
Find the position vector of midpoint M joining the points L(7, –6, 12) and N(5, 4, –2).
If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find
- the ratio in which the point C divides the line segment AB
- the values of p and q.
Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.
Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.
If the centroid of a tetrahedron OABC is (1, 2, - 1) where A(a, 2, 3), B(1, b, 2), C(2, 1, c), find the distance of P(a, b, c) from origin.
The points A, B, C have position vectors `bar"a", bar"b" and bar"c"` respectively. The point P is the midpoint of AB. Find the vector `bar"PC"` in terms of `bar"a", bar"b", bar"c"`.
Prove that `(bar"a" xx bar"b").(bar"c" xx bar"d")` =
`|bar"a".bar"c" bar"b".bar"c"|`
`|bar"a".bar"d" bar"b".bar"d"|.`
Find the volume of a parallelopiped whose coterimus edges are represented by the vectors `hat"i" + hat"k", hat"i" + hat"k", hat"i" + hat"j"`. Also find volume of tetrahedron having these coterminus edges.
Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `-5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3:2
(i) internally
(ii) externally
If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c
If the plane 2x + 3y + 5z = 1 intersects the co-ordinate axes at the points A, B, C, then the centroid of Δ ABC is ______.
In a triangle ABC, if `1/(a + c) + 1/(b + c) = 3/(a + b + c)` then angle C is equal to ______
If G(3, -5, r) is centroid of triangle ABC where A(7, - 8, 1), B(p, q, 5) and C(q + 1, 5p, 0) are vertices of a triangle then values of p, q, rare respectively.
P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then `overline"OA" + overline"OB" + overline"OC" + overline"OD"` = ______
If A, B, C are the vertices of a triangle whose position vectors are `overline("a"),overline("b"),overline("c")` and G is the centroid of the `triangle ABC,` then `overline("GA")+overline("GB")+overline("GC")` is ______.
Let `square`PQRS be a quadrilateral. If M and N are midpoints of the sides PQ and RS respectively then `bar"PS" + bar"OR"` = ______.
In ΔABC, P is the midpoint of BC, Q divides CA internally in the ratio 2:1 and R divides AB externally in the ratio 1:2, then ______.
What is the midpoint of the vector joining the point P(2, 3, 4) and Q(4, 1, –2)?
If D, E, F are the mid points of the sides BC, CA and AB respectively of a triangle ABC and 'O' is any point, then, `|vec(AD) + vec(BE) + vec(CF)|`, is ______.
ΔABC has vertices at A = (2, 3, 5), B = (–1, 3, 2) and C = (λ, 5, µ). If the median through A is equally inclined to the axes, then the values of λ and µ respectively are ______.
The position vectors of three consecutive vertices of a parallelogram ABCD are `A(4hati + 2hatj - 6hatk), B(5hati - 3hatj + hatk)`, and `C(12hati + 4hatj + 5hatk)`. The position vector of D is given by ______.
The position vector of points A and B are `6 bar "a" + 2 bar "b" and bar "a" - 3 bar"b"`. If the point C divided AB in the ratio 3 : 2, show that the position vector of C is `3 bar "a" - bar "b".`
Using vector method, prove that the perpendicular bisectors of sides of a triangle are concurrent.
Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be the third point on the line AB dividing the segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.
AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:
`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`
If `bara, barb, barc` are the position vectors of the points A, B, C respectively and `5 bar a - 3 bar b - 2 bar c = bar 0`, then find the ratio in which the point C divides the line segment BA.
The position vector of points A and B are 6`bara + 2barb and bara - 3barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is 3`bara - barb`.
The position vectors of points A and B are 6`bara` + 2`barb` and `bara - 3barb`. If the point C divides AB in the ratio 3:2, then show that the position vector of C is 3`bara - b`.