Advertisements
Advertisements
प्रश्न
Prove that the diagonals of a rhombus are perpendicular bisectors of each other.
उत्तर
Let OABC be a rhombus, whose diagonals OB and AC intersect at D. Suppose O is the origin.
Let the position vector of A and C be \[\vec{a}\] and \[\vec{c}\] respectively.
Then, \[\vec{OA} = \vec{a}\]
In ∆OAB,
\[\vec{OB} = \vec{OA} + \vec{AB} = \vec{OA} + \vec{OC} = \vec{a} + \vec{c}\]..........\[\left( \vec{AB} = \vec{OC} \right)\]
Position vector of mid-point of \[\vec{OB} = \frac{1}{2}\left( \vec{a} + \vec{c} \right)\]
Position vector of mid-point of\[\vec{OB} = \frac{1}{2}\left( \vec{a} + \vec{c} \right)\]................(Mid-point formula)
So, the mid-points of OB and AC coincide. Thus, the diagonals OB and AC bisect each other.
Now,
\[\vec{OB} . \vec{AC} = \left( \vec{a} + \vec{c} \right) . \left( \vec{c} - \vec{a} \right)\]
\[ = \left( \vec{c} + \vec{a} \right) . \left( \vec{c} - \vec{a} \right)\]
\[ = \left| \vec{c} \right|^2 - \left| \vec{a} \right|^2 \]
\[ = \left| \vec{OC} \right|^2 - \left| \vec{OA} \right|^2 \]
\[ = 0 \left( \left| \vec{OC} \right| = \left| \vec{OA} \right| \right)\]
\[ \Rightarrow \vec{OB} \perp \vec{AC}\]
Hence, the diagonals OB and AC are perpendicular to each other.
Thus, the diagonals of a rhombus are perpendicular bisectors of each other.
APPEARS IN
संबंधित प्रश्न
By vector method prove that the medians of a triangle are concurrent.
Find the coordinate of the point P where the line through A(3, –4, –5) and B(2, –3, 1) crosses the plane passing through three points L(2, 2, 1), M(3, 0, 1) and N(4, –1, 0).
Also, find the ratio in which P divides the line segment AB.
Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
If AD is the median of ∆ABC, using vectors, prove that \[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\]
If the median to the base of a triangle is perpendicular to the base, then triangle is isosceles.
In a quadrilateral ABCD, prove that \[{AB}^2 + {BC}^2 + {CD}^2 + {DA}^2 = {AC}^2 + {BD}^2 + 4 {PQ}^2\] where P and Q are middle points of diagonals AC and BD.
Let `A (bara)` and `B (barb)` are any two points in the space and `"R"(bar"r")` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r = (mbarb + nbara)/(m + n) `
Find the position vector of midpoint M joining the points L(7, –6, 12) and N(5, 4, –2).
If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find
- the ratio in which the point C divides the line segment AB
- the values of p and q.
The position vector of points A and B are `6bar"a" + 2bar"b"` and `bar"a" - 3bar"b"`. If the point C divides AB in the ratio 3 : 2, show that the position vector of C is `3bar"a" - bar"b"`.
Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.
If two of the vertices of a triangle are A (3, 1, 4) and B(− 4, 5, −3) and the centroid of the triangle is at G (−1, 2, 1), then find the coordinates of the third vertex C of the triangle.
Find the centroid of tetrahedron with vertices K(5, −7, 0), L(1, 5, 3), M(4, −6, 3), N(6, −4, 2)
Prove that `(bar"a" xx bar"b").(bar"c" xx bar"d")` =
`|bar"a".bar"c" bar"b".bar"c"|`
`|bar"a".bar"d" bar"b".bar"d"|.`
If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c
Prove that medians of a triangle are concurrent
Prove that the angle bisectors of a triangle are concurrent
If G(3, -5, r) is centroid of triangle ABC where A(7, - 8, 1), B(p, q, 5) and C(q + 1, 5p, 0) are vertices of a triangle then values of p, q, rare respectively.
P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then `overline"OA" + overline"OB" + overline"OC" + overline"OD"` = ______
If M and N are the midpoints of the sides BC and CD respectively of a parallelogram ABCD, then `overline(AM) + overline(AN)` = ______
Let `square`PQRS be a quadrilateral. If M and N are midpoints of the sides PQ and RS respectively then `bar"PS" + bar"OR"` = ______.
In ΔABC, P is the midpoint of BC, Q divides CA internally in the ratio 2:1 and R divides AB externally in the ratio 1:2, then ______.
What is the midpoint of the vector joining the point P(2, 3, 4) and Q(4, 1, –2)?
In ΔABC the mid-point of the sides AB, BC and CA are respectively (l, 0, 0), (0, m, 0) and (0, 0, n). Then, `("AB"^2 + "BC"^2 + "CA"^2)/("l"^2 + "m"^2 + "n"^2)` is equal to ______.
ΔABC has vertices at A = (2, 3, 5), B = (–1, 3, 2) and C = (λ, 5, µ). If the median through A is equally inclined to the axes, then the values of λ and µ respectively are ______.
If G(g), H(h) and (p) are centroid orthocentre and circumcentre of a triangle and xp + yh + zg = 0, then (x, y, z) is equal to ______.
The position vector of points A and B are `6bara +2barb ` and `bara-3barb `.If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara-barb` .
Find the ratio in which the point C divides segment AB, if `5bara + 4barb - 9barc = bar0`
Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be the third point on the line AB dividing the segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.
AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:
`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`
The position vector of points A and B are `6 bara + 2barb and bara - 3barb.` If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara - barb.`
The position vector of points A and B are 6`bara + 2barb and bara - 3barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is 3`bara - barb`.