मराठी

In a Triangle Oab, ∠ Aob = 90º. If P and Q Are Points of Trisection of Ab, Prove that O P 2 + O Q 2 = 5 9 a B 2 - Mathematics

Advertisements
Advertisements

प्रश्न

In a triangle OAB,\[\angle\]AOB = 90º. If P and Q are points of trisection of AB, prove that \[{OP}^2 + {OQ}^2 = \frac{5}{9} {AB}^2\]

बेरीज

उत्तर

 

In triangle OAB,\[\angle\]AOB = 90º. P and Q are points of trisection of AB. 

Taking O as the origin, let the position vectors of A and B be \[\vec{a}\] and \[\vec{b}\] respectively.

Since P and Q are the points of trisection of AB, so AP : PB = 1 : 2 and AQ : QB = 2 : 1.

Position vector of P, \[\vec{OP} = \frac{2 \vec{a} + \vec{b}}{3}\]  ..................(Using section formula)
Position vector of Q,  

\[\vec{OQ} = \frac{\vec{a} + 2 \vec{b}}{3}\]  

\[\therefore \vec{a} . \vec{b} = 0\] ................(1) 

Now, 

\[{OP}^2 + {OQ}^2 \]

\[ = \left| \vec{OP} \right|^2 + \left| \vec{OQ} \right|^2 \]

\[ = \left( \frac{2 \vec{a} + \vec{b}}{3} \right) . \left( \frac{2 \vec{a} + \vec{b}}{3} \right) + \left( \frac{\vec{a} + 2 \vec{b}}{3} \right) . \left( \frac{\vec{a} + 2 \vec{b}}{3} \right)\]

\[ = \frac{4 \left| \vec{a} \right|^2 + 4 \vec{a} . \vec{b} + \left| \vec{b} \right|^2 + \left| \vec{a} \right|^2 + 4 \vec{a} . \vec{b} + 4 \left| \vec{b} \right|^2}{9}\] 

\[= \frac{5 \left| \vec{a} \right|^2 + 5 \left| \vec{b} \right|^2}{9}.............. \left[ \text{ Using } \left( 1 \right) \right]\]

\[ = \frac{5}{9}\left( \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 \right)\]

\[ = \frac{5}{9} \left| \vec{AB} \right|^2 ........................\left[ \text{ Using Pythagoras Theorem } \right]\]

\[ = \frac{5}{9} {AB}^2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - Exercise 24.2 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
Exercise 24.2 | Q 1 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

By vector method prove that the medians of a triangle are concurrent.


Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. 


(Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 


Prove that the diagonals of a rhombus are perpendicular bisectors of each other. 


If AD is the median of ∆ABC, using vectors, prove that \[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\] 


In a quadrilateral ABCD, prove that \[{AB}^2 + {BC}^2 + {CD}^2 + {DA}^2 = {AC}^2 + {BD}^2 + 4 {PQ}^2\] where P and Q are middle points of diagonals AC and BD. 


Let `A (bara)` and `B (barb)` are any two points in the space and `"R"(bar"r")` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r = (mbarb + nbara)/(m + n) `


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and  `- 5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3 : 2 is externally.


Find the position vector of midpoint M joining the points L(7, –6, 12) and N(5, 4, –2).


The points A, B, C have position vectors `bar"a", bar"b" and bar"c"` respectively. The point P is the midpoint of AB. Find the vector `bar"PC"` in terms of `bar"a", bar"b", bar"c"`.


If D, E, F are the midpoints of the sides BC, CA, AB of a triangle ABC, prove that `bar"AD" + bar"BE" + bar"CF" = bar0`.


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `-5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3:2
(i) internally
(ii) externally


If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c


If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r


Prove that medians of a triangle are concurrent


Prove that the angle bisectors of a triangle are concurrent


Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4)


If A(1, 3, 2), B(a, b, - 4) and C(5, 1, c) are the vertices of triangle ABC and G(3, b, c) is its centroid, then


In a triangle ABC, if `1/(a + c) + 1/(b + c) = 3/(a + b + c)` then angle C is equal to ______


If the position vectors of points A and B are `hati + 8hatj + 4hatk` and `7hati + 2hatj - 8hatk`, then what will be the position vector of the midpoint of AB?


If M and N are the midpoints of the sides BC and CD respectively of a parallelogram ABCD, then `overline(AM) + overline(AN)` = ______


If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______


The co-ordinates of the points which divides line segment joining the point A(2, –6, 8) and B(–1, 3,–4) internally in the ratio 1: 3' are ______.


If D, E, F are the mid points of the sides BC, CA and AB respectively of a triangle ABC and 'O' is any point, then, `|vec(AD) + vec(BE) + vec(CF)|`, is ______.


If G(g), H(h) and (p) are centroid orthocentre and circumcentre of a triangle and xp + yh + zg = 0, then (x, y, z) is equal to ______.


The position vector of points A and B are `6bara +2barb ` and `bara-3barb `.If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara-barb` .


Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be the third point on the line AB dividing the segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.


AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:

`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`


The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.


The position vector of points A and B are `6bara + 2 barb` and `bara-3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara -barb`.


The position vector of points A and B are `6 bara + 2barb and bara - 3barb.` If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara - barb.`


The position vector of points A and B are 6`bara + 2barb and bara - 3barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is 3`bara - barb`.  


The position vectors of points A and B are 6`bara` + 2`barb` and `bara - 3barb`. If the point C divides AB in the ratio 3:2, then show that the position vector of C is 3`bara - b`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×