Advertisements
Advertisements
प्रश्न
By vector method prove that the medians of a triangle are concurrent.
Using vector method prove that the medians of a triangle are concurrent.
उत्तर
Let A, B and C be vertices of a triangle.
Let D, E and F be the mid-points of the sides BC, AC and AB respectively.
Let
Therefore, by mid-point formula,
∴
∴
∴
∴
Then we have
If G is the point whose position vector is
Therefore, three medians are concurrent.
APPEARS IN
संबंधित प्रश्न
Find the coordinate of the point P where the line through A(3, –4, –5) and B(2, –3, 1) crosses the plane passing through three points L(2, 2, 1), M(3, 0, 1) and N(4, –1, 0).
Also, find the ratio in which P divides the line segment AB.
Show that the points A (1, –2, –8), B (5, 0, –2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are
If the origin is the centroid of the triangle whose vertices are A(2, p, –3), B(q, –2, 5) and C(–5, 1, r), then find the values of p, q, r.
Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
Prove that the diagonals of a rhombus are perpendicular bisectors of each other.
If AD is the median of ∆ABC, using vectors, prove that
In a quadrilateral ABCD, prove that
Let
Find the position vector of midpoint M joining the points L(7, –6, 12) and N(5, 4, –2).
If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find
- the ratio in which the point C divides the line segment AB
- the values of p and q.
The position vector of points A and B are
Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.
Prove that the median of a trapezium is parallel to the parallel sides of the trapezium and its length is half of the sum of the lengths of the parallel sides.
In Δ OAB, E is the midpoint of OB and D is the point on AB such that AD : DB = 2 : 1. If OD and AE intersect at P, then determine the ratio OP : PD using vector methods.
If the centroid of a tetrahedron OABC is (1, 2, - 1) where A(a, 2, 3), B(1, b, 2), C(2, 1, c), find the distance of P(a, b, c) from origin.
If D, E, F are the midpoints of the sides BC, CA, AB of a triangle ABC, prove that
Prove that
If
If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c
If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and
Prove that medians of a triangle are concurrent
Prove that altitudes of a triangle are concurrent
Prove that the angle bisectors of a triangle are concurrent
Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4)
If A(1, 3, 2), B(a, b, - 4) and C(5, 1, c) are the vertices of triangle ABC and G(3, b, c) is its centroid, then
If the plane 2x + 3y + 5z = 1 intersects the co-ordinate axes at the points A, B, C, then the centroid of Δ ABC is ______.
Let G be the centroid of a Δ ABC and O be any other point in that plane, then OA + OB + OC + CG = ?
In a quadrilateral ABCD, M and N are the mid-points of the sides AB and CD respectively. If AD + BC = tMN, then t = ____________.
In a triangle ABC, if
If G(3, -5, r) is centroid of triangle ABC where A(7, - 8, 1), B(p, q, 5) and C(q + 1, 5p, 0) are vertices of a triangle then values of p, q, rare respectively.
P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then
If P(2, 2), Q(- 2, 4) and R(3, 4) are the vertices of Δ PQR then the equation of the median through vertex R is ______.
If the position vectors of points A and B are
If the orthocentre and circumcentre of a triangle are (-3, 5, 1) and (6, 2, -2) respectively, then its centroid is ______
If A, B, C are the vertices of a triangle whose position vectors are
The co-ordinates of the points which divides line segment joining the point A(2, –6, 8) and B(–1, 3,–4) internally in the ratio 1: 3' are ______.
Let
What is the midpoint of the vector joining the point P(2, 3, 4) and Q(4, 1, –2)?
ΔABC has vertices at A = (2, 3, 5), B = (–1, 3, 2) and C = (λ, 5, µ). If the median through A is equally inclined to the axes, then the values of λ and µ respectively are ______.
M and N are the mid-points of the diagonals AC and BD respectively of quadrilateral ABCD, then AB + AD + CB + CD is equal to ______.
The position vectors of three consecutive vertices of a parallelogram ABCD are
The position vector of points A and B are
If
Let
AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:
If
The position vector of points A and B are
The position vector of points A and B are
The position vector of points A and B are
The position vector of points A and B are
The position vector of points A and B are
The position vector of points A and B are 6
The position vectors of points A and B are 6