मराठी

Show that the points A (1, –2, –8), B (5, 0, –2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the points A (1, –2, –8), B (5, 0, –2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.

बेरीज

उत्तर

The given points are A (1, –2, –8), B (5, 0, –2), and C (11, 3, 7).

∴ `vec(AB) = (5 - 1)hati + (0 + 2)hatj + (-2 + 8)hatk `

`= 4hati + 2hatj + 6hatk`

`vec(BC) = (11 - 5)hati + (3 - 0)hatj + (7 + 2)hatk`

`= 6hati + 3hatj + 9hatk`

`vec(AC) = (11 - 1)hati + (3 + 2)hatj + (7 + 8)hatk`

`= 10hati + 5hatj + 15hhatk`

`|vec(AB)| = sqrt(4^2 + 2^2 + 6^2) = sqrt(16 + 4 + 36) `

`= sqrt56 `

`= 2sqrt14`

`|vec(BC)| = sqrt(6^2 + 3^2 + 9^2) `

`= sqrt(36 + 9 + 81)`

` = sqrt126 `

`= 3sqrt14`

`|vec(AC)| = sqrt(10^2 + 5^2 + 15^2)`

` = sqrt(100 + 25 + 225) `

`= sqrt350 `

`= 5sqrt14`

∴ `|vec(AC)| = |vec(AB)| + |vec(BC)|`

Thus, the given points A, B, and C are collinear.

Now, let point B divide AC in the ratio `lambda: 1`. Then, we have:

`vec(OB) = (lambdavec(OC) + vec(OA))/((lambda + 1))`

`⇒ 5hati - 2hatk = (lambda(11hati + 3hatj + 7hatk) + (hati - 2hatj - 8hatk))/(lambda + 1)`

⇒ `(lambda + 1)(5hati - 2hatk) = 11lambdahati + 3lambdahatj + 7lambdahatk + hati - 2hatj - 8hatk`

`⇒ 5(lambda + 1)hati - 2(lambda + 1)hatk = (11lambda + 1)hati + (3lambda - 2)hatj + (7lambda - 8)hatk`

On equating the corresponding components, we get:

5(λ + 1) = 11λ + 1

⇒ 5λ + 5 = 11λ + 1

⇒ 6λ = 4

⇒ λ = `4/6 + 2/3`

Hence, point B divides AC in the ratio of 2: 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Vector Algebra - Exercise 10.5 [पृष्ठ ४५८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 10 Vector Algebra
Exercise 10.5 | Q 8 | पृष्ठ ४५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. 


(Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 


Prove that the diagonals of a rhombus are perpendicular bisectors of each other. 


Prove that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square. 


If AD is the median of ∆ABC, using vectors, prove that \[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\] 


Let `A (bara)` and `B (barb)` are any two points in the space and `"R"(bar"r")` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r = (mbarb + nbara)/(m + n) `


Find the position vector of midpoint M joining the points L(7, –6, 12) and N(5, 4, –2).


If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find

  1. the ratio in which the point C divides the line segment AB
  2. the values of p and q.

Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.


Find the centroid of tetrahedron with vertices K(5, −7, 0), L(1, 5, 3), M(4, −6, 3), N(6, −4, 2)


The points A, B, C have position vectors `bar"a", bar"b" and bar"c"` respectively. The point P is the midpoint of AB. Find the vector `bar"PC"` in terms of `bar"a", bar"b", bar"c"`.


If D, E, F are the midpoints of the sides BC, CA, AB of a triangle ABC, prove that `bar"AD" + bar"BE" + bar"CF" = bar0`.


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `-5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3:2
(i) internally
(ii) externally


If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c


Prove that altitudes of a triangle are concurrent


Prove that the angle bisectors of a triangle are concurrent


In a quadrilateral ABCD, M and N are the mid-points of the sides AB and CD respectively. If AD + BC = tMN, then t = ____________.


If G(3, -5, r) is centroid of triangle ABC where A(7, - 8, 1), B(p, q, 5) and C(q + 1, 5p, 0) are vertices of a triangle then values of p, q, rare respectively.


If G and G' are the centroids of the triangles ABC and A'B'C', then `overline("A""A"^') + overline("B""B"^') + overline("C""C"^')` is equal to ______ 


The image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3` is ______ 


If the orthocentre and circumcentre of a triangle are (-3, 5, 1) and (6, 2, -2) respectively, then its centroid is ______


If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______


If `3bar"a" + 5bar"b" = 8bar"c"`, then A divides BC in tbe ratio ______.


If A, B, C are the vertices of a triangle whose position vectors are `overline("a"),overline("b"),overline("c")` and G is the centroid of the `triangle ABC,` then `overline("GA")+overline("GB")+overline("GC")` is ______.


The co-ordinates of the points which divides line segment joining the point A(2, –6, 8) and B(–1, 3,–4) internally in the ratio 1: 3' are ______.


In ΔABC the mid-point of the sides AB, BC and CA are respectively (l, 0, 0), (0, m, 0) and (0, 0, n). Then, `("AB"^2 + "BC"^2 + "CA"^2)/("l"^2 + "m"^2 + "n"^2)` is equal to ______.


If G(g), H(h) and (p) are centroid orthocentre and circumcentre of a triangle and xp + yh + zg = 0, then (x, y, z) is equal to ______.


The position vectors of three consecutive vertices of a parallelogram ABCD are `A(4hati + 2hatj - 6hatk), B(5hati - 3hatj + hatk)`, and `C(12hati + 4hatj + 5hatk)`. The position vector of D is given by ______.


AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:

`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`


The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.


The position vector of points A and B are `6bara + 2barb` and `bara - 3barb`. If the point C divides AB in the ratio 3 : 2,  then show that the position vector of C is `3bara - barb`. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×