Advertisements
Advertisements
प्रश्न
In a quadrilateral ABCD, prove that \[{AB}^2 + {BC}^2 + {CD}^2 + {DA}^2 = {AC}^2 + {BD}^2 + 4 {PQ}^2\] where P and Q are middle points of diagonals AC and BD.
उत्तर
Let ABCD be the quadrilateral. Taking A as the origin, let the position vectors of B, C and D be \[\vec{b} , \vec{c}\] and \[\vec{d}\] respectively.
Then,
Position vector of P =\[\frac{\vec{c}}{2}\]........(Mid-point formula)
Position vector of Q = \[\frac{\vec{b} + \vec{d}}{2}\]..............(Mid-point formula)
Now,
\[{AB}^2 + {BC}^2 + {CD}^2 + {DA}^2 \]
\[ = \left| \vec{AB} \right|^2 + \left| \vec{BC} \right|^2 + \left| \vec{CD} \right|^2 + \left| \vec{DA} \right|^2 \]
\[ = \left| \vec{b} \right|^2 + \left| \vec{c} - \vec{b} \right|^2 + \left| \vec{d} - \vec{c} \right|^2 + \left| \vec{d} \right|^2 \]
\[ = \left| \vec{b} \right|^2 + \left| \vec{c} \right|^2 - 2 \vec{c} . \vec{b} + \left| \vec{b} \right|^2 + \left| \vec{d} \right|^2 - 2 \vec{d} . \vec{c} + \left| \vec{c} \right|^2 + \left| \vec{d} \right|\]
\[ = 2 \left| \vec{b} \right|^2 + 2 \left| \vec{c} \right|^2 + 2 \left| \vec{d} \right|^2 - 2 \vec{b} . \vec{c} - 2 \vec{c} . \vec{d} . . . . . \left( 1 \right)\]
Also,
\[{AC}^2 + {BD}^2 + 4 {PQ}^2 \]
\[ = \left| \vec{AC} \right|^2 + \left| \vec{BD} \right|^2 + 4 \left| \vec{PQ} \right|^2 \]
\[ = \left| \vec{c} \right|^2 + \left| \vec{d} - \vec{b} \right|^2 + 4 \left| \frac{\vec{b} + \vec{d}}{2} - \frac{\vec{c}}{2} \right|^2 \]
\[ = \left| \vec{c} \right|^2 + \left| \vec{d} - \vec{b} \right|^2 + \left| \vec{b} + \vec{d} \right|^2 - 2\left( \vec{b} + \vec{d} \right) . \vec{c} + \left| \vec{c} \right|^2 \]
\[ = 2 \left| \vec{c} \right|^2 + 2 \left| \vec{d} \right|^2 + 2 \left| \vec{b} \right|^2 - 2 \vec{b} . \vec{c} - 2 \vec{d} . \vec{c} \]
\[ = 2 \left| \vec{b} \right|^2 + 2 \left| \vec{c} \right|^2 + 2 \left| \vec{d} \right|^2 - 2 \vec{b} . \vec{c} - 2 \vec{c} . \vec{d} . . . . . \left( 2 \right)\]
From (1) and (2), we have
\[{AB}^2 + {BC}^2 + {CD}^2 + {DA}^2 = {AC}^2 + {BD}^2 + 4 {PQ}^2\]
APPEARS IN
संबंधित प्रश्न
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `P(2veca + vecb)` and `Q(veca - 3vecb)` externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.
If the origin is the centroid of the triangle whose vertices are A(2, p, –3), B(q, –2, 5) and C(–5, 1, r), then find the values of p, q, r.
Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
(Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Prove that the diagonals of a rhombus are perpendicular bisectors of each other.
If AD is the median of ∆ABC, using vectors, prove that \[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\]
If the median to the base of a triangle is perpendicular to the base, then triangle is isosceles.
Let `A (bara)` and `B (barb)` are any two points in the space and `"R"(bar"r")` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r = (mbarb + nbara)/(m + n) `
Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hati - hatj + 3hatk` and `- 5hati + 2hatj - 5hatk` in the ratio 3:2 is internally.
Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `- 5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3 : 2 is externally.
The position vector of points A and B are `6bar"a" + 2bar"b"` and `bar"a" - 3bar"b"`. If the point C divides AB in the ratio 3 : 2, show that the position vector of C is `3bar"a" - bar"b"`.
If two of the vertices of a triangle are A (3, 1, 4) and B(− 4, 5, −3) and the centroid of the triangle is at G (−1, 2, 1), then find the coordinates of the third vertex C of the triangle.
If the centroid of a tetrahedron OABC is (1, 2, - 1) where A(a, 2, 3), B(1, b, 2), C(2, 1, c), find the distance of P(a, b, c) from origin.
If D, E, F are the midpoints of the sides BC, CA, AB of a triangle ABC, prove that `bar"AD" + bar"BE" + bar"CF" = bar0`.
Prove that `(bar"a" xx bar"b").(bar"c" xx bar"d")` =
`|bar"a".bar"c" bar"b".bar"c"|`
`|bar"a".bar"d" bar"b".bar"d"|.`
Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `-5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3:2
(i) internally
(ii) externally
If A(1, 3, 2), B(a, b, - 4) and C(5, 1, c) are the vertices of triangle ABC and G(3, b, c) is its centroid, then
If the plane 2x + 3y + 5z = 1 intersects the co-ordinate axes at the points A, B, C, then the centroid of Δ ABC is ______.
In a triangle ABC, if `1/(a + c) + 1/(b + c) = 3/(a + b + c)` then angle C is equal to ______
P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then `overline"OA" + overline"OB" + overline"OC" + overline"OD"` = ______
If the position vectors of points A and B are `hati + 8hatj + 4hatk` and `7hati + 2hatj - 8hatk`, then what will be the position vector of the midpoint of AB?
The image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3` is ______
If `3bar"a" + 5bar"b" = 8bar"c"`, then A divides BC in tbe ratio ______.
If A, B, C are the vertices of a triangle whose position vectors are `overline("a"),overline("b"),overline("c")` and G is the centroid of the `triangle ABC,` then `overline("GA")+overline("GB")+overline("GC")` is ______.
Find the unit vector in the diret:tion of the vector `veca = hati + hatj + 2hatk`
M and N are the mid-points of the diagonals AC and BD respectively of quadrilateral ABCD, then AB + AD + CB + CD is equal to ______.
If `overlinea, overlineb, overlinec` are the position vectors of the points A, B, C respectively and `5overlinea + 3overlineb - 8overlinec = overline0` then find the ratio in which the point C divides the line segment AB.
The position vector of points A and B are `6 bar "a" + 2 bar "b" and bar "a" - 3 bar"b"`. If the point C divided AB in the ratio 3 : 2, show that the position vector of C is `3 bar "a" - bar "b".`
The position vector of points A and B are `6bara +2barb ` and `bara-3barb `.If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara-barb` .
AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:
`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`
If `bara, barb, barc` are the position vectors of the points A, B, C respectively and `5 bar a - 3 bar b - 2 bar c = bar 0`, then find the ratio in which the point C divides the line segment BA.
The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.
The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.
The position vector of points A and B are `6bara + 2 barb` and `bara-3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara -barb`.
The position vector of points A and B are `6bara + 2barb` and `bara - 3barb`. If the point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.
The position vector of points A and B are 6`bara + 2barb and bara - 3barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is 3`bara - barb`.