मराठी

Prove by Vector Method that the Sum of the Squares of the Diagonals of a Parallelogram is Equal to the Sum of the Squares of Its Sides. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

बेरीज

उत्तर

 

Let ABCD be a parallelogram such that AC and BD are its two diagonals. Taking A as the origin, let the position vectors of B and D be \[\vec{b}\]  and \[\vec{d}\] respectively.

Then,   \[\vec{AB} = \vec{b}\]  and \[\vec{AD} = \vec{d}\]

Using triangle law of vector addition, we have

\[\vec{AD} + \vec{DB} = \vec{AB} \] 
\[ \Rightarrow \vec{DB} = \vec{b} - \vec{d}\] 

In ∆ABC,  

\[\vec{AC} = \vec{AB} + \vec{BC} = \vec{AB} + \vec{AD} = \vec{b} + \vec{d}\] 

Now, 

\[\left| \vec{AB} \right|^2 + \left| \vec{BC} \right|^2 + \left| \vec{CD} \right|^2 + \left| \vec{DA} \right|^2 \]
\[ = \left| \vec{AB} \right|^2 + \left| \vec{AD} \right|^2 + \left| - \vec{AB} \right|^2 + \left| - \vec{AD} \right|^2 \]
\[ = 2 \left| \vec{AB} \right|^2 + 2 \left| \vec{AD} \right|^2 \]
\[ = 2 \left| \vec{b} \right|^2 + 2 \left| \vec{d} \right|^2 . . . . . \left( 1 \right)\] 

Also, 

\[\left| \vec{DB} \right|^2 + \left| \vec{AC} \right|^2 \]
\[ = \left| \vec{b} - \vec{d} \right|^2 + \left| \vec{b} + \vec{d} \right|^2 \]
\[ = \left( \vec{b} - \vec{d} \right) . \left( \vec{b} - \vec{d} \right) + \left( \vec{b} + \vec{d} \right) . \left( \vec{b} + \vec{d} \right)\]
\[ = \left| \vec{b} \right|^2 - 2 \vec{b} . \vec{d} + \left| \vec{d} \right|^2 + \left| \vec{b} \right|^2 + 2 \vec{b} . \vec{d} + \left| \vec{d} \right|^2 \]
\[ = 2 \left| \vec{b} \right|^2 + 2 \left| \vec{d} \right|^2 . . . . . \left( 2 \right)\] 

From (1) and (2), we have 

\[\left| \vec{AB} \right|^2 + \left| \vec{BC} \right|^2 + \left| \vec{CD} \right|^2 + \left| \vec{DA} \right|^2 = \left| \vec{DB} \right|^2 + \left| \vec{AC} \right|^2\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - Exercise 24.2 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
Exercise 24.2 | Q 4 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

By vector method prove that the medians of a triangle are concurrent.


If point C `(barc)` divides the segment joining the points A(`bara`) and  B(`barb`) internally in the ratio m : n, then prove that `barc=(mbarb+nbara)/(m+n)`

 

 


If the origin is the centroid of the triangle whose vertices are A(2, p, –3), B(q, –2, 5) and C(–5, 1, r), then find the values of p, q, r.


In a triangle OAB,\[\angle\]AOB = 90º. If P and Q are points of trisection of AB, prove that \[{OP}^2 + {OQ}^2 = \frac{5}{9} {AB}^2\]


If AD is the median of ∆ABC, using vectors, prove that \[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\] 


In a quadrilateral ABCD, prove that \[{AB}^2 + {BC}^2 + {CD}^2 + {DA}^2 = {AC}^2 + {BD}^2 + 4 {PQ}^2\] where P and Q are middle points of diagonals AC and BD. 


The position vector of points A and B are `6bar"a" + 2bar"b"` and `bar"a" - 3bar"b"`. If the point C divides AB in the ratio 3 : 2, show that the position vector of C is `3bar"a" - bar"b"`.


Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.


Prove that `(bar"a" xx bar"b").(bar"c" xx bar"d")` =
`|bar"a".bar"c"    bar"b".bar"c"|`
`|bar"a".bar"d"    bar"b".bar"d"|.`


If `bara, barb` and `barc` are position vectors of the points A, B, C respectively and `5bara - 3barb - 2barc = bar0`, then find the ratio in which the point C divides the line segement BA.


If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r


Prove that the angle bisectors of a triangle are concurrent


Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4)


If A(1, 3, 2), B(a, b, - 4) and C(5, 1, c) are the vertices of triangle ABC and G(3, b, c) is its centroid, then


If the plane 2x + 3y + 5z = 1 intersects the co-ordinate axes at the points A, B, C, then the centroid of Δ ABC is ______.


In a triangle ABC, if `1/(a + c) + 1/(b + c) = 3/(a + b + c)` then angle C is equal to ______


If G(3, -5, r) is centroid of triangle ABC where A(7, - 8, 1), B(p, q, 5) and C(q + 1, 5p, 0) are vertices of a triangle then values of p, q, rare respectively.


P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then `overline"OA" + overline"OB" + overline"OC" + overline"OD"` = ______ 


If P(2, 2), Q(- 2, 4) and R(3, 4) are the vertices of Δ PQR then the equation of the median through vertex R is ______.


If G and G' are the centroids of the triangles ABC and A'B'C', then `overline("A""A"^') + overline("B""B"^') + overline("C""C"^')` is equal to ______ 


If M and N are the midpoints of the sides BC and CD respectively of a parallelogram ABCD, then `overline(AM) + overline(AN)` = ______


If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______


If `3bar"a" + 5bar"b" = 8bar"c"`, then A divides BC in tbe ratio ______.


In ΔABC, P is the midpoint of BC, Q divides CA internally in the ratio 2:1 and R divides AB externally in the ratio 1:2, then ______.


ΔABC has vertices at A = (2, 3, 5), B = (–1, 3, 2) and C = (λ, 5, µ). If the median through A is equally inclined to the axes, then the values of λ and µ respectively are ______.


If `overlinea, overlineb, overlinec` are the position vectors of the points A, B, C respectively and `5overlinea + 3overlineb - 8overlinec = overline0` then find the ratio in which the point C divides the line segment AB.


The position vector of points A and B are `6 bar "a" + 2 bar "b" and bar "a" - 3 bar"b"`. If the point C divided AB in the ratio 3 : 2, show that the position vector of C is `3 bar "a" - bar "b".`


The position vector of points A and B are `6bara +2barb ` and `bara-3barb `.If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara-barb` .


If `bara, barb` and `barr` are position vectors of the points A, B and R respectively and R divides the line segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.


AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:

`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`


The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.


The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.


The position vector of points A and B are `6bara + 2 barb` and `bara-3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara -barb`.


The position vector of points A and B are `6 bara + 2 barb and bara - 3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3 bara - barb`.


The position vectors of points A and B are 6`bara` + 2`barb` and `bara - 3barb`. If the point C divides AB in the ratio 3:2, then show that the position vector of C is 3`bara - b`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×