English

Prove by Vector Method that the Sum of the Squares of the Diagonals of a Parallelogram is Equal to the Sum of the Squares of Its Sides. - Mathematics

Advertisements
Advertisements

Question

Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Sum

Solution

 

Let ABCD be a parallelogram such that AC and BD are its two diagonals. Taking A as the origin, let the position vectors of B and D be \[\vec{b}\]  and \[\vec{d}\] respectively.

Then,   \[\vec{AB} = \vec{b}\]  and \[\vec{AD} = \vec{d}\]

Using triangle law of vector addition, we have

\[\vec{AD} + \vec{DB} = \vec{AB} \] 
\[ \Rightarrow \vec{DB} = \vec{b} - \vec{d}\] 

In ∆ABC,  

\[\vec{AC} = \vec{AB} + \vec{BC} = \vec{AB} + \vec{AD} = \vec{b} + \vec{d}\] 

Now, 

\[\left| \vec{AB} \right|^2 + \left| \vec{BC} \right|^2 + \left| \vec{CD} \right|^2 + \left| \vec{DA} \right|^2 \]
\[ = \left| \vec{AB} \right|^2 + \left| \vec{AD} \right|^2 + \left| - \vec{AB} \right|^2 + \left| - \vec{AD} \right|^2 \]
\[ = 2 \left| \vec{AB} \right|^2 + 2 \left| \vec{AD} \right|^2 \]
\[ = 2 \left| \vec{b} \right|^2 + 2 \left| \vec{d} \right|^2 . . . . . \left( 1 \right)\] 

Also, 

\[\left| \vec{DB} \right|^2 + \left| \vec{AC} \right|^2 \]
\[ = \left| \vec{b} - \vec{d} \right|^2 + \left| \vec{b} + \vec{d} \right|^2 \]
\[ = \left( \vec{b} - \vec{d} \right) . \left( \vec{b} - \vec{d} \right) + \left( \vec{b} + \vec{d} \right) . \left( \vec{b} + \vec{d} \right)\]
\[ = \left| \vec{b} \right|^2 - 2 \vec{b} . \vec{d} + \left| \vec{d} \right|^2 + \left| \vec{b} \right|^2 + 2 \vec{b} . \vec{d} + \left| \vec{d} \right|^2 \]
\[ = 2 \left| \vec{b} \right|^2 + 2 \left| \vec{d} \right|^2 . . . . . \left( 2 \right)\] 

From (1) and (2), we have 

\[\left| \vec{AB} \right|^2 + \left| \vec{BC} \right|^2 + \left| \vec{CD} \right|^2 + \left| \vec{DA} \right|^2 = \left| \vec{DB} \right|^2 + \left| \vec{AC} \right|^2\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.2 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.2 | Q 4 | Page 46

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Show that the points A (1, –2, –8), B (5, 0, –2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `P(2veca + vecb)` and `Q(veca - 3vecb)` externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hati - hatj + 3hatk`  and `- 5hati + 2hatj - 5hatk` in the ratio 3:2 is internally.


Find the position vector of midpoint M joining the points L(7, –6, 12) and N(5, 4, –2).


If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find

  1. the ratio in which the point C divides the line segment AB
  2. the values of p and q.

The position vector of points A and B are `6bar"a" + 2bar"b"` and `bar"a" - 3bar"b"`. If the point C divides AB in the ratio 3 : 2, show that the position vector of C is `3bar"a" - bar"b"`.


In Δ OAB, E is the midpoint of OB and D is the point on AB such that AD : DB = 2 : 1. If OD and AE intersect at P, then determine the ratio OP : PD using vector methods.


The points A, B, C have position vectors `bar"a", bar"b" and bar"c"` respectively. The point P is the midpoint of AB. Find the vector `bar"PC"` in terms of `bar"a", bar"b", bar"c"`.


If D, E, F are the midpoints of the sides BC, CA, AB of a triangle ABC, prove that `bar"AD" + bar"BE" + bar"CF" = bar0`.


Prove that `(bar"a" xx bar"b").(bar"c" xx bar"d")` =
`|bar"a".bar"c"    bar"b".bar"c"|`
`|bar"a".bar"d"    bar"b".bar"d"|.`


Find the volume of a parallelopiped whose coterimus edges are represented by the vectors `hat"i" + hat"k", hat"i" + hat"k", hat"i" + hat"j"`. Also find volume of tetrahedron having these coterminus edges.


If `bara, barb` and `barc` are position vectors of the points A, B, C respectively and `5bara - 3barb - 2barc = bar0`, then find the ratio in which the point C divides the line segement BA.


If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c


If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r


Prove that altitudes of a triangle are concurrent


Let G be the centroid of a Δ ABC and O be any other point in that plane, then OA + OB + OC + CG = ?


In a triangle ABC, if `1/(a + c) + 1/(b + c) = 3/(a + b + c)` then angle C is equal to ______


If P(2, 2), Q(- 2, 4) and R(3, 4) are the vertices of Δ PQR then the equation of the median through vertex R is ______.


If G and G' are the centroids of the triangles ABC and A'B'C', then `overline("A""A"^') + overline("B""B"^') + overline("C""C"^')` is equal to ______ 


If `3bar"a" + 5bar"b" = 8bar"c"`, then A divides BC in tbe ratio ______.


If A, B, C are the vertices of a triangle whose position vectors are `overline("a"),overline("b"),overline("c")` and G is the centroid of the `triangle ABC,` then `overline("GA")+overline("GB")+overline("GC")` is ______.


The co-ordinates of the points which divides line segment joining the point A(2, –6, 8) and B(–1, 3,–4) internally in the ratio 1: 3' are ______.


In ΔABC, P is the midpoint of BC, Q divides CA internally in the ratio 2:1 and R divides AB externally in the ratio 1:2, then ______.


Find the unit vector in the diret:tion of the vector `veca = hati + hatj + 2hatk`


M and N are the mid-points of the diagonals AC and BD respectively of quadrilateral ABCD, then AB + AD + CB + CD is equal to ______.


The position vector of points A and B are `6 bar "a" + 2 bar "b" and bar "a" - 3 bar"b"`. If the point C divided AB in the ratio 3 : 2, show that the position vector of C is `3 bar "a" - bar "b".`


If `bara, barb` and `barr` are position vectors of the points A, B and R respectively and R divides the line segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.


Using vector method, prove that the perpendicular bisectors of sides of a triangle are concurrent.


Find the ratio in which the point C divides segment AB, if `5bara + 4barb - 9barc = bar0`


AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:

`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`


If `bara, barb, barc` are the position vectors of the points A, B, C respectively and `5 bar a - 3 bar b - 2 bar c = bar 0`, then find the ratio in which the point C divides the line segment BA.


The position vector of points A and B are `6bara + 2 barb` and `bara-3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara -barb`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×