English

In Δ OAB, E is the midpoint of OB and D is the point on AB such that AD : DB = 2 : 1. If OD and AE intersect at P, then determine the ratio OP : PD using vector methods. - Mathematics and Statistics

Advertisements
Advertisements

Question

In Δ OAB, E is the midpoint of OB and D is the point on AB such that AD : DB = 2 : 1. If OD and AE intersect at P, then determine the ratio OP : PD using vector methods.

Sum

Solution

Let A, B, D, E, P have position vectors `bar"a", bar"b", bar"d", bar"e", bar"p"` respectively

w.r.t. O.

∵ AD : DB = 2 : 1

∴ D divides AB internally in the ratio 2 : 1.

Using section formula for internal division, we get

`bar"d" = (2bar"b" + bar"a")/(2 + 1)`

∴ `3bar"d" = 2bar"b" + bar"a"`     ...(1)

Since E is the midpoint of OB, `bar"e" = bar"OE" = 1/2 bar"OB" = bar"b"/2`

∴ `bar"b" = 2bar"e"`       ....(2)

∴ from (1),

`3bar"d" = 2(2bar"e") + bar"a"`    ...[By(2)]

`= 4bar"e" + bar"a"`

∴ `(3bar"d" + 2.bar0)/(3 + 2) = (4bar"e" + bar"a")/(4 + 1)`

LHS is the position vector of the point which divides OD internally in the ratio 3 : 2.

RHS is the position vector of the point which divides AE internally in the ratio 4 : 1.

But OD and AE intersect at P

∴ P divides OD internally in the ratio 3 : 2.

Hence, OP : PD = 3 : 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Vectors - Exercise 5.2 [Page 160]

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If  `bar p = hat i - 2 hat j + hat k and bar q = hat i + 4 hat j - 2 hat k` are position vector (P.V.) of points P and Q, find the position vector of the point R which divides segment PQ internally in the ratio 2:1

 

By vector method prove that the medians of a triangle are concurrent.


If point C `(barc)` divides the segment joining the points A(`bara`) and  B(`barb`) internally in the ratio m : n, then prove that `barc=(mbarb+nbara)/(m+n)`

 

 


Find the coordinate of the point P where the line through A(3, –4, –5) and B(2, –3, 1) crosses the plane passing through three points L(2, 2, 1), M(3, 0, 1) and N(4, –1, 0).
Also, find the ratio in which P divides the line segment AB.


If the origin is the centroid of the triangle whose vertices are A(2, p, –3), B(q, –2, 5) and C(–5, 1, r), then find the values of p, q, r.


In a triangle OAB,\[\angle\]AOB = 90º. If P and Q are points of trisection of AB, prove that \[{OP}^2 + {OQ}^2 = \frac{5}{9} {AB}^2\]


Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. 


Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.


Prove using vectors: The quadrilateral obtained by joining mid-points of adjacent sides of a rectangle is a rhombus. 


Prove that the diagonals of a rhombus are perpendicular bisectors of each other. 


Prove that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square. 


If AD is the median of ∆ABC, using vectors, prove that \[{AB}^2 + {AC}^2 = 2\left( {AD}^2 + {CD}^2 \right)\] 


In a quadrilateral ABCD, prove that \[{AB}^2 + {BC}^2 + {CD}^2 + {DA}^2 = {AC}^2 + {BD}^2 + 4 {PQ}^2\] where P and Q are middle points of diagonals AC and BD. 


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hati - hatj + 3hatk`  and `- 5hati + 2hatj - 5hatk` in the ratio 3:2 is internally.


Find the position vector of midpoint M joining the points L(7, –6, 12) and N(5, 4, –2).


If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find

  1. the ratio in which the point C divides the line segment AB
  2. the values of p and q.

The position vector of points A and B are `6bar"a" + 2bar"b"` and `bar"a" - 3bar"b"`. If the point C divides AB in the ratio 3 : 2, show that the position vector of C is `3bar"a" - bar"b"`.


Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.


Prove that the median of a trapezium is parallel to the parallel sides of the trapezium and its length is half of the sum of the lengths of the parallel sides.


If the centroid of a tetrahedron OABC is (1, 2, - 1) where A(a, 2, 3), B(1, b, 2), C(2, 1, c), find the distance of P(a, b, c) from origin.


The points A, B, C have position vectors `bar"a", bar"b" and bar"c"` respectively. The point P is the midpoint of AB. Find the vector `bar"PC"` in terms of `bar"a", bar"b", bar"c"`.


If D, E, F are the midpoints of the sides BC, CA, AB of a triangle ABC, prove that `bar"AD" + bar"BE" + bar"CF" = bar0`.


If `bara, barb` and `barc` are position vectors of the points A, B, C respectively and `5bara - 3barb - 2barc = bar0`, then find the ratio in which the point C divides the line segement BA.


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `-5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3:2
(i) internally
(ii) externally


If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c


If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r


Prove that medians of a triangle are concurrent


Prove that the angle bisectors of a triangle are concurrent


Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4)


If the plane 2x + 3y + 5z = 1 intersects the co-ordinate axes at the points A, B, C, then the centroid of Δ ABC is ______.


Let G be the centroid of a Δ ABC and O be any other point in that plane, then OA + OB + OC + CG = ?


In a triangle ABC, if `1/(a + c) + 1/(b + c) = 3/(a + b + c)` then angle C is equal to ______


P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then `overline"OA" + overline"OB" + overline"OC" + overline"OD"` = ______ 


If P(2, 2), Q(- 2, 4) and R(3, 4) are the vertices of Δ PQR then the equation of the median through vertex R is ______.


If the position vectors of points A and B are `hati + 8hatj + 4hatk` and `7hati + 2hatj - 8hatk`, then what will be the position vector of the midpoint of AB?


If the orthocentre and circumcentre of a triangle are (-3, 5, 1) and (6, 2, -2) respectively, then its centroid is ______


If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______


If A, B, C are the vertices of a triangle whose position vectors are `overline("a"),overline("b"),overline("c")` and G is the centroid of the `triangle ABC,` then `overline("GA")+overline("GB")+overline("GC")` is ______.


The co-ordinates of the points which divides line segment joining the point A(2, –6, 8) and B(–1, 3,–4) internally in the ratio 1: 3' are ______.


Let `square`PQRS be a quadrilateral. If M and N are midpoints of the sides PQ and RS respectively then `bar"PS" + bar"OR"` = ______.


What is the midpoint of the vector joining the point P(2, 3, 4) and Q(4, 1, –2)?


If D, E, F are the mid points of the sides BC, CA and AB respectively of a triangle ABC and 'O' is any point, then, `|vec(AD) + vec(BE) + vec(CF)|`, is ______.


ΔABC has vertices at A = (2, 3, 5), B = (–1, 3, 2) and C = (λ, 5, µ). If the median through A is equally inclined to the axes, then the values of λ and µ respectively are ______.


M and N are the mid-points of the diagonals AC and BD respectively of quadrilateral ABCD, then AB + AD + CB + CD is equal to ______.


If `overlinea, overlineb, overlinec` are the position vectors of the points A, B, C respectively and `5overlinea + 3overlineb - 8overlinec = overline0` then find the ratio in which the point C divides the line segment AB.


The position vector of points A and B are `6 bar "a" + 2 bar "b" and bar "a" - 3 bar"b"`. If the point C divided AB in the ratio 3 : 2, show that the position vector of C is `3 bar "a" - bar "b".`


The position vector of points A and B are `6bara +2barb ` and `bara-3barb `.If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara-barb` .


Using vector method, prove that the perpendicular bisectors of sides of a triangle are concurrent.


Find the ratio in which the point C divides segment AB, if `5bara + 4barb - 9barc = bar0`


Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be the third point on the line AB dividing the segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.


The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.


The position vector of points A and B are `6 bara + 2barb and bara - 3barb.` If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara - barb.`


The position vector of points A and B are 6`bara + 2barb and bara - 3barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is 3`bara - barb`.  


The position vectors of points A and B are 6`bara` + 2`barb` and `bara - 3barb`. If the point C divides AB in the ratio 3:2, then show that the position vector of C is 3`bara - b`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×