English

Prove That: If the Diagonals of a Quadrilateral Bisect Each Other at Right Angles, Then It is a Rhombus. - Mathematics

Advertisements
Advertisements

Question

Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. 

Sum

Solution

 

Let OACB be a quadrilateral such that diagonals OC and AB bisect each other at 90º.

Taking O as the origin, let the poisition vectors of A and B be \[\vec{a}\] and \[\vec{b}\]  respectively. 

Then, \[\vec{OA} = \vec{a}\] and \[\vec{OB} = \vec{b}\] Position vector of mid-point of AB, \[\vec{OE} = \frac{\vec{a} + \vec{b}}{2}\] 

∴ Position vector of C, \[\vec{OC} = \vec{a} + \vec{b}\] 

By the triangle law of vector addition, we have 

\[\vec{OA} + \vec{AB} = \vec{OB} \]
\[ \Rightarrow \vec{AB} = \vec{OB} - \vec{OA} = \vec{b} - \vec{a}\] 

Since \[\vec{AB} \perp \vec{OC}\]  

\[\Rightarrow \vec{AB} . \vec{OC} = 0\]

\[ \Rightarrow \left( \vec{b} - \vec{a} \right) . \left( \vec{a} + \vec{b} \right) = 0\]

\[ \Rightarrow \left| \vec{b} \right|^2 - \left| \vec{a} \right|^2 = 0\]

\[ \Rightarrow \left| \vec{a} \right|^2 = \left| \vec{b} \right|^2 \]

\[ \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]

\[ \Rightarrow OA = OB\] 

In a quadrilateral if diagonals bisects each other at right angle and adjacent sides are equal, then it is a rhombus. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.2 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.2 | Q 2 | Page 46

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If point C `(barc)` divides the segment joining the points A(`bara`) and  B(`barb`) internally in the ratio m : n, then prove that `barc=(mbarb+nbara)/(m+n)`

 

 


Find the coordinate of the point P where the line through A(3, –4, –5) and B(2, –3, 1) crosses the plane passing through three points L(2, 2, 1), M(3, 0, 1) and N(4, –1, 0).
Also, find the ratio in which P divides the line segment AB.


Show that the points A (1, –2, –8), B (5, 0, –2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.


If the origin is the centroid of the triangle whose vertices are A(2, p, –3), B(q, –2, 5) and C(–5, 1, r), then find the values of p, q, r.


Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.


If the median to the base of a triangle is perpendicular to the base, then triangle is isosceles. 


If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find

  1. the ratio in which the point C divides the line segment AB
  2. the values of p and q.

The position vector of points A and B are `6bar"a" + 2bar"b"` and `bar"a" - 3bar"b"`. If the point C divides AB in the ratio 3 : 2, show that the position vector of C is `3bar"a" - bar"b"`.


Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.


Prove that the median of a trapezium is parallel to the parallel sides of the trapezium and its length is half of the sum of the lengths of the parallel sides.


If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c


Prove that altitudes of a triangle are concurrent


If A(1, 3, 2), B(a, b, - 4) and C(5, 1, c) are the vertices of triangle ABC and G(3, b, c) is its centroid, then


If the plane 2x + 3y + 5z = 1 intersects the co-ordinate axes at the points A, B, C, then the centroid of Δ ABC is ______.


If the position vectors of points A and B are `hati + 8hatj + 4hatk` and `7hati + 2hatj - 8hatk`, then what will be the position vector of the midpoint of AB?


If M and N are the midpoints of the sides BC and CD respectively of a parallelogram ABCD, then `overline(AM) + overline(AN)` = ______


If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______


If `3bar"a" + 5bar"b" = 8bar"c"`, then A divides BC in tbe ratio ______.


The co-ordinates of the points which divides line segment joining the point A(2, –6, 8) and B(–1, 3,–4) internally in the ratio 1: 3' are ______.


What is the midpoint of the vector joining the point P(2, 3, 4) and Q(4, 1, –2)?


If D, E, F are the mid points of the sides BC, CA and AB respectively of a triangle ABC and 'O' is any point, then, `|vec(AD) + vec(BE) + vec(CF)|`, is ______.


M and N are the mid-points of the diagonals AC and BD respectively of quadrilateral ABCD, then AB + AD + CB + CD is equal to ______.


If `overlinea, overlineb, overlinec` are the position vectors of the points A, B, C respectively and `5overlinea + 3overlineb - 8overlinec = overline0` then find the ratio in which the point C divides the line segment AB.


If `bara, barb` and `barr` are position vectors of the points A, B and R respectively and R divides the line segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.


Using vector method, prove that the perpendicular bisectors of sides of a triangle are concurrent.


The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.


The position vector of points A and B are `6 bara + 2barb and bara - 3barb.` If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara - barb.`


The position vector of points A and B are `6 bara + 2 barb and bara - 3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3 bara - barb`.


The position vectors of points A and B are 6`bara` + 2`barb` and `bara - 3barb`. If the point C divides AB in the ratio 3:2, then show that the position vector of C is 3`bara - b`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×