Advertisements
Advertisements
Question
Prove using vectors: The quadrilateral obtained by joining mid-points of adjacent sides of a rectangle is a rhombus.
Solution
ABCD is a rectangle. Let P, Q, R and S be the mid-points of the sides AB, BC, CD and DA, respectively.
Now,
\[\vec{PQ} = \vec{PB} + \vec{BQ} = \frac{1}{2} \vec{AB} + \frac{1}{2} \vec{BC} = \frac{1}{2}\left( \vec{AB} + \vec{BC} \right) = \frac{1}{2} \vec{AC}\]..............( 1 )
\[\vec{SR} = \vec{SD} + \vec{DR} = \frac{1}{2} \vec{AD} + \frac{1}{2} \vec{DC} = \frac{1}{2}\left( \vec{AD} + \vec{DC} \right) = \frac{1}{2} \vec{AC}\] ...............( 2 )
From (1) and (2), we have
\[\vec{PQ} = \vec{SR}\]
So, the sides PQ and SR are equal and parallel. Thus, PQRS is a parallelogram.
Now,
\[\left| \vec{PQ} \right|^2 = \vec{PQ} . \vec{PQ} \]
\[ \Rightarrow \left| \vec{PQ} \right|^2 = \left( \vec{PB} + \vec{BQ} \right) . \left( \vec{PB} + \vec{BQ} \right)\]
\[ \Rightarrow \left| \vec{PQ} \right|^2 = \left| \vec{PB} \right|^2 + 2 \vec{PB} . \vec{BQ} + \left| \vec{BQ} \right|^2 \]
\[ \Rightarrow \left| \vec{PQ} \right|^2 = \left| \vec{PB} \right|^2 + 0 + \left| \vec{BQ} \right|^2 \left( \vec{PB} \perp \vec{BQ} \right)\]
\[ \Rightarrow \left| \vec{PQ} \right|^2 = \left| \vec{PB} \right|^2 + \left| \vec{BQ} \right|^2 ....................\left( 3 \right)\]
Also,
\[\left| \vec{PS} \right|^2 = \vec{PS} . \vec{PS} \]
\[ \Rightarrow \left| \vec{PS} \right|^2 = \left( \vec{PA} + \vec{AS} \right) . \left( \vec{PA} + \vec{AS} \right)\]
\[ \Rightarrow \left| \vec{PS} \right|^2 = \left| \vec{PA} \right|^2 + 2 \vec{PA} . \vec{AS} + \left| \vec{AS} \right|^2 \]
\[ \Rightarrow \left| \vec{PS} \right|^2 = \left| \vec{PB} \right|^2 + 0 + \left| \vec{BQ} \right|^2 \left( \vec{PA} \perp \vec{AS} \right)\]
\[ \Rightarrow \left| \vec{PS} \right|^2 = \left| \vec{PB} \right|^2 + \left| \vec{BQ} \right|^2........................\left( 4 \right)\]
From (3) and (4), we have
\[\left| \vec{PQ} \right|^2 = \left| \vec{PS} \right|^2 \]
\[ \Rightarrow \left| \vec{PQ} \right| = \left| \vec{PS} \right|\]
So, the adjacent sides of the parallelogram are equal. Hence, PQRS is a rhombus.
APPEARS IN
RELATED QUESTIONS
By vector method prove that the medians of a triangle are concurrent.
If point C `(barc)` divides the segment joining the points A(`bara`) and B(`barb`) internally in the ratio m : n, then prove that `barc=(mbarb+nbara)/(m+n)`
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `P(2veca + vecb)` and `Q(veca - 3vecb)` externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.
In a triangle OAB,\[\angle\]AOB = 90º. If P and Q are points of trisection of AB, prove that \[{OP}^2 + {OQ}^2 = \frac{5}{9} {AB}^2\]
Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
Prove that the diagonals of a rhombus are perpendicular bisectors of each other.
Prove that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square.
In a quadrilateral ABCD, prove that \[{AB}^2 + {BC}^2 + {CD}^2 + {DA}^2 = {AC}^2 + {BD}^2 + 4 {PQ}^2\] where P and Q are middle points of diagonals AC and BD.
Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hati - hatj + 3hatk` and `- 5hati + 2hatj - 5hatk` in the ratio 3:2 is internally.
Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `- 5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3 : 2 is externally.
Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.
Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.
Prove that the median of a trapezium is parallel to the parallel sides of the trapezium and its length is half of the sum of the lengths of the parallel sides.
If two of the vertices of a triangle are A (3, 1, 4) and B(− 4, 5, −3) and the centroid of the triangle is at G (−1, 2, 1), then find the coordinates of the third vertex C of the triangle.
In Δ OAB, E is the midpoint of OB and D is the point on AB such that AD : DB = 2 : 1. If OD and AE intersect at P, then determine the ratio OP : PD using vector methods.
Find the centroid of tetrahedron with vertices K(5, −7, 0), L(1, 5, 3), M(4, −6, 3), N(6, −4, 2)
If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r
Prove that medians of a triangle are concurrent
Prove that altitudes of a triangle are concurrent
Prove that the angle bisectors of a triangle are concurrent
Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4)
If the plane 2x + 3y + 5z = 1 intersects the co-ordinate axes at the points A, B, C, then the centroid of Δ ABC is ______.
Let G be the centroid of a Δ ABC and O be any other point in that plane, then OA + OB + OC + CG = ?
If the position vectors of points A and B are `hati + 8hatj + 4hatk` and `7hati + 2hatj - 8hatk`, then what will be the position vector of the midpoint of AB?
If G and G' are the centroids of the triangles ABC and A'B'C', then `overline("A""A"^') + overline("B""B"^') + overline("C""C"^')` is equal to ______
If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______
If `3bar"a" + 5bar"b" = 8bar"c"`, then A divides BC in tbe ratio ______.
The co-ordinates of the points which divides line segment joining the point A(2, –6, 8) and B(–1, 3,–4) internally in the ratio 1: 3' are ______.
In ΔABC, P is the midpoint of BC, Q divides CA internally in the ratio 2:1 and R divides AB externally in the ratio 1:2, then ______.
In ΔABC the mid-point of the sides AB, BC and CA are respectively (l, 0, 0), (0, m, 0) and (0, 0, n). Then, `("AB"^2 + "BC"^2 + "CA"^2)/("l"^2 + "m"^2 + "n"^2)` is equal to ______.
M and N are the mid-points of the diagonals AC and BD respectively of quadrilateral ABCD, then AB + AD + CB + CD is equal to ______.
Let `A(bara)` and `B(barb)` be any two points in the space and `R(barr)` be the third point on the line AB dividing the segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.
AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:
`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`
The position vector of points A and B are `6bara + 2 barb` and `bara-3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara -barb`.
The position vectors of points A and B are 6`bara` + 2`barb` and `bara - 3barb`. If the point C divides AB in the ratio 3:2, then show that the position vector of C is 3`bara - b`.