हिंदी

If Abcdef is a Regular Hexagon, Then → a D + → E B + → F C Equals - Mathematics

Advertisements
Advertisements

प्रश्न

If ABCDEF is a regular hexagon, then \[\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}\] equals

 

विकल्प

  • \[2 \overrightarrow{AB}\]

  • \[\vec{0}\]
  • \[3 \overrightarrow{AB}\]

  • \[4 \overrightarrow{AB}\]
MCQ
योग

उत्तर

\[4 \overrightarrow{AB}\]


\[\begin{array}{l}\overrightarrow{AD} = 2 \overrightarrow{BC} \\ \overrightarrow{EB} = 2 \overrightarrow{FA} \\ \overrightarrow{FC} = 2 \overrightarrow{AB}\end{array}\]
\[\begin{array}{cl}\overrightarrow{AD} + \overrightarrow{EB} & =  2\left( \overrightarrow{BC} + \overrightarrow{FA} \right) \\ = & 2\left( \overrightarrow{AO} + \overrightarrow{FA} \right) \left( \because \hspace{0.167em} \overrightarrow{BC} = \overrightarrow{AO} \right)\end{array}\]
In triangle AOF,
\[\begin{array}{l}\overrightarrow{FA} + \overrightarrow{AO} + \overrightarrow{FO} = 0 \\ \therefore \hspace{0.167em} \hspace{0.167em} \overrightarrow{FA} + \overrightarrow{AO} = - \overrightarrow{FO} \\ \therefore \hspace{0.167em} \hspace{0.167em} \overrightarrow{AD} + \overrightarrow{EB} = - 2 \overrightarrow{FO}\end{array}\]
And \[\overrightarrow{AB} = - \overrightarrow{FO}\]
\[\begin{array}{l}\therefore \hspace{0.167em} \hspace{0.167em} \overrightarrow{AD} + \overrightarrow{EB} = 2 \overrightarrow{AB} \\ \therefore \hspace{0.167em} \hspace{0.167em} \overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = 2 \overrightarrow{AB} + 2 \overrightarrow{AB} = 4 \overrightarrow{AB}\end{array}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Algebra of Vectors - MCQ [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 23 Algebra of Vectors
MCQ | Q 13 | पृष्ठ ७९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the position vector of the mid-point of the line segment AB, where A is the point (3, 4, −2) and B is the point (1, 2, 4).


If points A (60 \[\hat{i}\] + 3 \[\hat{j}\]), B (40 \[\hat{i}\] − 8 \[\hat{j}\]) and C (a \[\hat{i}\] − 52 \[\hat{j}\]) are collinear, then a is equal to


In a regular hexagon ABCDEF, A \[\vec{B}\] = a, B \[\vec{C}\] = \[\overrightarrow{b}\text{ and }\overrightarrow{CD} = \vec{c}\].
Then, \[\overrightarrow{AE}\] =


If three points A, B and C have position vectors \[\hat{i} + x \hat{j} + 3 \hat{k} , 3 \hat{i} + 4 \hat{j} + 7 \hat{k}\text{ and }y \hat{i} - 2 \hat{j} - 5 \hat{k}\] respectively are collinear, then (x, y) =


The vector `bar"a"` is directed due north and `|bar"a"|` = 24. The vector `bar"b"` is directed due west and `|bar"b"| = 7`. Find `|bar"a" + bar"b"|`.


If the sum of two unit vectors is itself a unit vector, then the magnitude of their difference is ______.


If `|bara|` = 3, `|barb|` = 5, `|barc|` = 7 and `bara + barb + barc = bar0`, then the angle between `bara` and `barb` is ______.


Select the correct option from the given alternatives:

The volume of tetrahedron whose vectices are (1,-6,10), (-1, -3, 7), (5, -1, λ) and (7, -4, 7) is 11 cu units, then the value of λ is


Select the correct option from the given alternatives:

Let α, β, γ be distinct real numbers. The points with position vectors `alphahat"i" + betahat"j" + gammahat"k",  betahat"i" + gammahat"j" + alphahat"k",   gammahat"i" + alphahat"j" + betahat"k"`


Select the correct option from the given alternatives:

If `bar"a"  "and"  bar"b"` are unit vectors, then what is the angle between `bar"a"` and `bar"b"` for `sqrt3bar"a" - bar"b"` to be a unit vector?


Find the component form of `bar"a"` if it lies in YZ-plane makes 60° with positive Y-axis and `|bar"a"| = 4`.


Find two unit vectors each of which makes equal angles with bar"u", bar"v" and bar"w" where bar"u" = 2hat"i" + hat"j" - 2hat"k", bar"v" = hat"i" + 2hat"j" - 2hat"k", bar"w" = 2hat"i" - 2hat"j" + hat"k".


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a".(bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`|bar"a"|. (bar"b" + bar"c")`


The points A(- a, -b), B (0, 0), C(a, b) and D(a2 , ab) are ______.


For any non zero vector, a, b, c a · ((b + c) × (a + b + c)] = ______.


For 0 < θ < π, if A = `[(costheta, -sintheta), (sintheta, costheta)]`, then ______ 


lf `overlinea`, `overlineb` and `overlinec` are unit vectors such that `overlinea + overlineb + overlinec = overline0` and angle between `overlinea` and `overlineb` is `pi/3`, then `|overlinea xx overlineb| + |overlineb xx overlinec| + |overlinec xx overlinea|` = ______ 


Find a unit vector in the direction of `vec"PQ"`, where P and Q have co-ordinates (5, 0, 8) and (3, 3, 2), respectively


If `|vec"a" + vec"b"| = |vec"a" - vec"b"|`, then the vectors `vec"a"` and `vec"b"` are orthogonal.


The formula `(vec"a" + vec"b")^2 = vec"a"^2 + vec"b"^2 + 2vec"a" xx vec"b"` is valid for non-zero vectors `vec"a"` and `vec"b"`


If `vec"a"` and `vec"b"` are adjacent sides of a rhombus, then `vec"a" * vec"b"` = 0


Classify the following as scalar and vector quantity.

Distance


Classify the following as scalar and vector quantity.

Work done


`bara, barb` and `barc` are three vectors such that `veca + vecb + vecc` 20,  `|bara| = 1, |barb| = 2` and `|barc| = 3`. Then `bara. barb + barb.barc + bar(c.a)` is equal to


In the triangle PQR, `bar(PQ) = 2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bar a and bar b `.

  1. `bar("PR")`
  2. `bar("PM")`
  3. `bar("QM")`

In the triangle PQR, `bar(PQ)` = `2bara` and `bar(QR)` = `2barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


In the triangle PQR, `bb(bar(PQ) = 2  bara)` and `bb(bar(QR) = 2  barb)`. The mid-point of PR is M. Find the following vectors in terms of `bb(bara and barb)`.

  1. `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

In the triangle PQR, `bar(PQ)=2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bara and barb`.

(i) `bar(PR)`  (ii) `bar(PM)`  (iii) `bar(QM)`


In the triangle PQR, `bar(PQ) = 2bara and bar(QR) = 2barb`. The mid-point of PR is M. Find the following vectors in terms of `bara and barb`.  

  1. `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


In the triangle PQR, `bar(PQ)` = 2`bara` and `bar(QR)` = 2`barb`. The midpoint of PR is M. Find the following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×