हिंदी

The formula ababab(a→+b→)2=a→2+b→2+2a→×b→ is valid for non-zero vectors aa→ and bb→ - Mathematics

Advertisements
Advertisements

प्रश्न

The formula `(vec"a" + vec"b")^2 = vec"a"^2 + vec"b"^2 + 2vec"a" xx vec"b"` is valid for non-zero vectors `vec"a"` and `vec"b"`

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

 `(vec"a" + vec"b")^2 = (vec"a" + vec"b") * (vec"a" + vec"b")`

= `|vec"a"|^2 + |vec"b"|^2 + 2vec"a" * vec"b"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Vector Algebra - Exercise [पृष्ठ २१९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 10 Vector Algebra
Exercise | Q 44 | पृष्ठ २१९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If \[\overrightarrow{a}\] is a non-zero vector of modulus a and m is a non-zero scalar such that m \[\overrightarrow{a}\] is a unit vector, write the value of m.


Write a unit vector in the direction of \[\overrightarrow{a} = 3 \hat{i} + 2 \hat{j} + 6 \hat{k} .\]


Let G be the centroid of ∆ ABC. If \[\overrightarrow{AB} = \vec{a,} \overrightarrow{AC} = \vec{b,}\] then the bisector \[\overrightarrow{AG} ,\] in terms of \[\vec{a}\text{ and }\vec{b}\] is


If ABCDEF is a regular hexagon, then \[\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}\] equals

 


The position vectors of the points ABC are \[2 \hat{i} + \hat{j} - \hat{k} , 3 \hat{i} - 2 \hat{j} + \hat{k}\text{ and }\hat{i} + 4 \hat{j} - 3 \hat{k}\] respectively.
These points


ABCD is a parallelogram with AC and BD as diagonals.
Then, \[\overrightarrow{AC} - \overrightarrow{BD} =\] 


If \[\vec{a}\text{ and }\vec{b}\] are two collinear vectors, then which of the following are incorrect?


Find the components along the coordinate axes of the position vector of the following point :

S(4, –3)


Find the position vector of the mid-point of the vector joining the points

\[P \left( 2 \hat{i} - 3\hat{ j} + 4 \hat{k} \right)\text{ and } Q \left( 4 \hat{i} + \hat{j} - 2 \hat{k} \right) .\]

If `veca` and `vecb` are non- collinear vectors, find the value of x such that the vectors `barα = (x - 2)veca + vecb` and `barβ = (3+2x)bara - 2barb` are collinear.


If `|bara|` = 3, `|barb|` = 5, `|barc|` = 7 and `bara + barb + barc = bar0`, then the angle between `bara` and `barb` is ______.


Select the correct option from the given alternatives:

If `|bar"a"| = 3` and - 1 ≤ k ≤ 2, then `|"k"bar"a"|` lies in the interval


Dot product of a vector with vectors `3hat"i" - 5hat"k",  2hat"i" + 7hat"j" and hat"i" + hat"j" + hat"k"` are respectively -1, 6 and 5. Find the vector.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a" xx (bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a". bar"b" + bar"c"`


a and b are non-collinear vectors. If p = (2x + 1) a - band q = (x - 2)a +b are collinear vectors, then x = ______.


For any non zero vector, a, b, c a · ((b + c) × (a + b + c)] = ______.


lf `overlinea`, `overlineb` and `overlinec` are unit vectors such that `overlinea + overlineb + overlinec = overline0` and angle between `overlinea` and `overlineb` is `pi/3`, then `|overlinea xx overlineb| + |overlineb xx overlinec| + |overlinec xx overlinea|` = ______ 


Using vectors, prove that cos (A – B) = cosA cosB + sinA sinB.


If `vec"a" = hat"i" + hat"j" + 2hat"k"` and `hat"b" = 2hat"i" + hat"j" - 2hat"k"`, find the unit vector in the direction of `2vec"a" - vec"b"`


Find a unit vector in the direction of `vec"PQ"`, where P and Q have co-ordinates (5, 0, 8) and (3, 3, 2), respectively


Using vectors, find the value of k such that the points (k, – 10, 3), (1, –1, 3) and (3, 5, 3) are collinear.


The vector `vec"a" + vec"b"` bisects the angle between the non-collinear vectors `vec"a"` and `vec"b"` if ______.


Classify the following measures as scalar and vector.

40°


Classify the following measures as scalar and vector.

10-19 coulomb


Find `|vecx|` if `(vecx - veca).(vecx + veca)` = 12, where `veca` is a unit vector.


Evaluate the following.

`int x^3/(sqrt1 + x^4) `dx


In the triangle PQR, `bar"PQ" = bar"2a", bar"QR" = bar"2b"`. The midpoint of PR is M. Find the following vectors in terms of `bar"a"` and `bar"b"`:

(i) `bar"PR"` (ii) `bar"PM"` (iii) `bar"QM"`.


In the triangle PQR, `bar(PQ)` = 2`bara` and `bar(QR)` = 2`barb`. The midpoint of PR is M. Find the following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×