हिंदी

Find the component form of aa¯ if it lies in YZ-plane makes 60° with positive Y-axis and a|a¯|=4. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the component form of `bar"a"` if it lies in YZ-plane makes 60° with positive Y-axis and `|bar"a"| = 4`.

योग

उत्तर

Let α, β, γ be the direction angles of `bar"a"`

Since `bar"a"` lies in YZ-plane, , it is perpendicular to X-axis

∴ α = 90°

It is given that β = 60°

∵ cos2α + cos2β + cos2γ = 1

∴ cos290° + cos260° + cos2γ = 1

∴ 0 + `(1/2)^2` + cos2γ = 1

∴ cos2γ  = `1 - 1/4 = 3/4`

∴ cos2γ = `+- sqrt3/2`

Unit vector along `bar"a"` is given by

`hat"a" = ("cos" alpha)hat"i" + ("cos"beta)hat"j" + ("cos"gamma)hat"k"`

`= 0.hat"i" + 1/2hat"j" + sqrt3/2hat"k"`

`= 1/2hat"j" +- sqrt3/2hat"k"`

∴ `bar"a" = |bar"a"|hat"a" = 4(1/2hat"j" +- sqrt3/2hat"k")`     .....[∵ `|bar"a"| = 4`]

∴ `bar"a" = 2hat"j" +- 2sqrt3hat"k"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Vectors - Miscellaneous exercise 5 [पृष्ठ १९०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Vectors
Miscellaneous exercise 5 | Q II. 8) i) | पृष्ठ १९०

संबंधित प्रश्न

If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are position vectors of the vertices A, B and C respectively, of a triangle ABC, write the value of \[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} .\]


If G denotes the centroid of ∆ABC, then write the value of \[\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} .\]


If \[\overrightarrow{a}\] and \[\overrightarrow{b}\] denote the position vectors of points A and B respectively and C is a point on AB such that 3AC = 2AB, then write the position vector of C.


Find the components along the coordinate axes of the position vector of the following point :

P(3, 2)


Find the components along the coordinate axes of the position vector of the following point :

Q(–5, 1)


If `veca` and `vecb` are non- collinear vectors, find the value of x such that the vectors `barα = (x - 2)veca + vecb` and `barβ = (3+2x)bara - 2barb` are collinear.


In the triangle PQR, `bar"PQ" = bar"2a", bar"QR" = bar"2b"`. The midpoint of PR is M. Find the following vectors in terms of `bar"a"` and `bar"b"`:

(i) `bar"PR"` (ii) `bar"PM"` (iii) `bar"QM"`.


OABCDE is a regular hexagon. The points A and B have position vectors `bar"a"` and `bar"b"` respectively referred to the origin O. Find, in terms of `bar"a"` and `bar"b"` the position vectors of C, D and E.


Select the correct option from the given alternatives:

If `bar"a"  "and"  bar"b"` are unit vectors, then what is the angle between `bar"a"` and `bar"b"` for `sqrt3bar"a" - bar"b"` to be a unit vector?


Select the correct option from the given alternatives:

Let a, b, c be distinct non-negative numbers. If the vectors `"a"hat"i" + "a"hat"j" + "c"hat"k" , hat"i" + hat"k"  "and"  "c"hat"i" + "c"hat"j" + "b"hat"k"` lie in a plane, then c is


Select the correct option from the given alternatives:

If `bar"a", bar"b", bar"c"` are non-coplanar unit vectors such that `bar"a"xx (bar"b"xxbar"c") = (bar"b"+bar"c")/sqrt2`, then the angle between `bar"a"  "and"  bar"b"` is 


In a parallelogram ABCD, diagonal vectors are `bar"AC" = 2hat"i" + 3hat"j" + 4hat"k" and bar"BD" = - 6hat"i" + 7hat"j" - 2hat"k"`, then find the adjacent side vectors `bar"AB" and bar"AD"`.


ABCD is a parallelogram. E, F are the midpoints of BC and CD respectively. AE, AF meet the diagonal BD at Q and P respectively. Show that P and Q trisect DB.


Find the angle between the lines whose direction cosines are given by the equations 6mn - 2nl + 5lm = 0, 3l + m + 5n = 0.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b") xx (bar"c".bar"d")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b")bar"c"`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a".(bar"b" + bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`|bar"a"|. (bar"b" + bar"c")`


If `bar"a", bar"b", bar"c"` are three non-coplanar vectors show that `(bar"a".(bar"b" xx bar"c"))/((bar"c" xx bar"a").bar"b") + (bar"b".(bar"a" xx bar"c"))/((bar"c" xx bar"a").bar"b") = 0`


The points A(- a, -b), B (0, 0), C(a, b) and D(a2 , ab) are ______.


For any non-zero vectors a and b, [b a × b a] = ?


lf `overlinea` and `overlineb` be two unit vectors and θ is the angle between them, then `|overlinea - overlineb|` is equal to ______


If the vectors `xhat"i" - 3hat"j" + 7hat"k" and hat"i" + "y"hat"j" - "z"hat"k"` are collinear then the value of `"xy"^2/"z"` is equal.


For any non zero vector, a, b, c a · ((b + c) × (a + b + c)] = ______.


lf `overlinea`, `overlineb` and `overlinec` are unit vectors such that `overlinea + overlineb + overlinec = overline0` and angle between `overlinea` and `overlineb` is `pi/3`, then `|overlinea xx overlineb| + |overlineb xx overlinec| + |overlinec xx overlinea|` = ______ 


If `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"` and `vec"c" = hat"i" + 3hat"j" - hat"k"`, find `lambda` such that `vec"a"` is perpendicular to `lambdavec"b" + vec"c"`.


The vector with initial point P (2, –3, 5) and terminal point Q(3, –4, 7) is ______.


Classify the following measures as scalar and vector.

10-19 coulomb


Classify the following as scalar and vector quantity.

Force


In the triangle PQR, `bar("P""Q")`= `2 bar"a"` and `bar ("QR")` = `2 barb`.The mid - point of PR is M. Find following vector in term of  `bar a ` and `barb.`

  1. `bar("P""R")` 
  2. `bar("P""M")`
  3. `bar("Q""M")`

In the triangle PQR, `bar(PQ)` = `2bara` and `bar(QR)` = `2barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk` and `3hati + 4hatk` form a triangle or not.


If `|veca| = 3, |vecb| = sqrt(2)/3` and `veca xx vecb` is a unit vector then the angle between `veca` and `vecb` will be ______.


If `hata` is unit vector and `(2vecx - 3hata)*(2vecx + 3hata)` = 91, find the value of `|vecx|`.


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not.


In the triangle PQR, `bar(PQ)`= 2`bar a` and `bar(QR)`= 2`bar b` . The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

  1.  `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

In the triangle PQR, `bar(PQ)` = 2`bara` and `bar(QR)` = 2`barb`. The midpoint of PR is M. Find the following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×