हिंदी

If O and O' Are Circumcentre and Orthocentre of ∆ Abc, Then → O a + → O B + → O C Equals - Mathematics

Advertisements
Advertisements

प्रश्न

If O and O' are circumcentre and orthocentre of ∆ ABC, then \[\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}\] equals 

विकल्प

  • 2\[\overrightarrow{OO}\]

  • \[O \overrightarrow{O'}\]
  • \[\overrightarrow{OO'}\]

     

  • \[2 \overrightarrow{O'O}\]
MCQ

उत्तर

Given: O be the circumcentre and \[O'\] be the orthocentre of \[\bigtriangleup ABC\].
Let G be the centroid of the triangle.
We know that O, G and H are collinear and by geometry \[\overrightarrow{O'G} = 2 \overrightarrow{OG} .\]
 This yields, \[\overrightarrow{O'O} = \overrightarrow{O'G} + \overrightarrow{GO} = 2 \overrightarrow{GO} + \overrightarrow{GO} = 3 \overrightarrow{GO} . \]
In other words \[\overrightarrow{OO'} = 3 \overrightarrow{OG} .\]
Since, \[\overrightarrow{OG} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}\]
∴ \[\overrightarrow{OO'} = 3 \times \frac{\vec{a} + \vec{b} + \vec{c}}{3} = \vec{a} + \vec{b} + \vec{c} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Algebra of Vectors - MCQ [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 23 Algebra of Vectors
MCQ | Q 10 | पृष्ठ ७८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If \[\vec{a}\] and \[\vec{b}\] represent two adjacent sides of a parallelogram, then write vectors representing its diagonals.


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] represent the sides of a triangle taken in order, then write the value of \[\vec{a} + \vec{b} + \vec{c} .\]


If \[\overrightarrow{a} = \hat{i} + 2 \hat{j} , \vec{b} = \hat{j} + 2 \hat{k} ,\] write a unit vector along the vector \[3 \overrightarrow{a} - 2 \overrightarrow{b} .\]


If ABCDEF is a regular hexagon, then \[\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}\] equals

 


If three points A, B and C have position vectors \[\hat{i} + x \hat{j} + 3 \hat{k} , 3 \hat{i} + 4 \hat{j} + 7 \hat{k}\text{ and }y \hat{i} - 2 \hat{j} - 5 \hat{k}\] respectively are collinear, then (x, y) =


If OACB is a parallelogram with \[\overrightarrow{OC} = \vec{a}\text{ and }\overrightarrow{AB} = \vec{b} ,\] then \[\overrightarrow{OA} =\]


Find the components along the coordinate axes of the position vector of the following point :

Q(–5, 1)


Find the components along the coordinate axes of the position vector of the following point :

S(4, –3)


Find the position vector of the mid-point of the vector joining the points

\[P \left( 2 \hat{i} - 3\hat{ j} + 4 \hat{k} \right)\text{ and } Q \left( 4 \hat{i} + \hat{j} - 2 \hat{k} \right) .\]

Show that the four points having position vectors

\[6 \hat { i} - 7 \hat { j} , 16 \hat {i} - 19 \hat {j}- 4 \hat {k} , 3 \hat {j} - 6 \hat {k} , 2 \hat {i} + 5 \hat {j} + 10 \hat {k}\] are not coplanar.


Find the value of λ for which the four points with position vectors `6hat"i" - 7hat"j", 16hat"i" - 19hat"j" - 4hat"k" , lambdahat"j" - 6hat"k"  "and"  2hat"i" - 5hat"j" + 10hat"k"` are coplanar.


OABCDE is a regular hexagon. The points A and B have position vectors `bar"a"` and `bar"b"` respectively referred to the origin O. Find, in terms of `bar"a"` and `bar"b"` the position vectors of C, D and E.


Find the distance from (4, - 2, 6) to each of the following:
(a) The XY-plane
(b) The YZ-plane
(c) The XZ-plane
(d) The X-axis
(e) The Y-axis
(f) The Z-axis.


Select the correct option from the given alternatives:

If l, m, n are direction cosines of a line then `"l"hat
"i" + "m"hat"j" + "n"hat"k"` is ______ 


Select the correct option from the given alternatives:

If `|bar"a"| = 3` and - 1 ≤ k ≤ 2, then `|"k"bar"a"|` lies in the interval


In a parallelogram ABCD, diagonal vectors are `bar"AC" = 2hat"i" + 3hat"j" + 4hat"k" and bar"BD" = - 6hat"i" + 7hat"j" - 2hat"k"`, then find the adjacent side vectors `bar"AB" and bar"AD"`.


Find the unit vectors that are parallel to the tangent line to the parabola y = x2 at the point (2, 4).


If `bar"OA" = bar"a" and bar"OB" = bar"b",` then show that the vector along the angle bisector of ∠AOB is given by `bar"d" = lambda(bar"a"/|bar"a"| + bar"b"/|bar"b"|).`


If P is orthocentre, Q is the circumcentre and G is the centroid of a triangle ABC, then prove that `bar"QP" = 3bar"QG"`.


The XZ plane divides the line segment joining the points (3, 2, b) and (a, -4, 3) in the ratio ______.


If the vectors `xhat"i" - 3hat"j" + 7hat"k" and hat"i" + "y"hat"j" - "z"hat"k"` are collinear then the value of `"xy"^2/"z"` is equal.


Find a vector `vec"r"` of magnitude `3sqrt(2)` units which makes an angle of `pi/4` and `pi/2` with y and z-axes, respectively.


If `|vec"a"|` = 8, `|vec"b"|` = 3 and `|vec"a" xx vec"b"|` = 12, then value of `vec"a" * vec"b"` is ______.


If `|vec"a"|` = 3 and –1 ≤ k ≤ 2, then `|"k"vec"a"|` lies in the interval ______.


Find a unit vector in the direction of `vec"PQ"`, where P and Q have co-ordinates (5, 0, 8) and (3, 3, 2), respectively


If `vec"a", vec"b", vec"c"` are unit vectors such that `vec"a" + vec"b" + vec"c"` = 0, then the value of `vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a"` is ______.


In Figure, identify the following vector.

 

Collinear but not equal


If `veca` and `vecb` are two collinear vectors then which of the following are incorrect.


Unit vector along `vec(PQ)`, where coordinates of P and Q respectively are (2, 1, – 1) and (4, 4, – 7), is ______.


Check whether the vectors `2hati + 2hatj + 3hat k, -3hati + 3hatj + 2hat k` and `3hati + 4hatk` form a triangle or not.


Find the value of λ for which the points (6, – 1, 2), (8, – 7, λ) and (5, 2, 4) are collinear.


If A(1, 2, – 3) and B(– 1, – 2, 1) are the end points of a vector `vec("AB")` then find the unit vector in the direction of `vec("AB")`.


If `hata` is unit vector and `(2vecx - 3hata)*(2vecx + 3hata)` = 91, find the value of `|vecx|`.


lf ΔABC is an equilateral triangle and length of each side is “a” units, then the value of `bar(AB)*bar(BC) + bar(BC)*bar(CA) + bar(CA)*bar(AB)` is ______.


In the triangle PQR, `bar(PQ)` = 2`bara` and `bar(QR)` = 2`barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

  1. `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×