हिंदी

If D, E, F Are the Mid-points of the Sides Bc, Ca and Ab Respectively of a Triangle Abc, Write the Value of → a D + → B E + → C F . - Mathematics

Advertisements
Advertisements

प्रश्न

If D, E, F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC, write the value of \[\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} .\]

योग

उत्तर

Given: D, E, F are the midpoints of the sides BC, CA, AB respectively.
Then, the position vectors of the midpoints  D, E, F  are given by  \[\frac{\overrightarrow{b} + \overrightarrow{c}}{2}, \frac{\overrightarrow{c} + \overrightarrow{a}}{2}, \frac{\overrightarrow{a} + \overrightarrow{b}}{2}\]
\[\text{ Now, }\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \left( \frac{\overrightarrow{b} + \overrightarrow{c}}{2} \right) - \overrightarrow{a} + \left( \frac{\overrightarrow{c} + \overrightarrow{a}}{2} \right) - \overrightarrow{b} + \left( \frac{\overrightarrow{a} + \overrightarrow{b}}{2} \right) - \overrightarrow{c} \]
\[ = 2\left( \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{2} \right) - \left( \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)\]
\[ = \left( \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right) - \left( \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)\]
\[ = \overrightarrow{0}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Algebra of Vectors - Very Short Answers [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 23 Algebra of Vectors
Very Short Answers | Q 14 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If G denotes the centroid of ∆ABC, then write the value of \[\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} .\]


Write the position vector of a point dividing the line segment joining points A and B with position vectors \[\vec{a}\] and \[\vec{b}\] externally in the ratio 1 : 4, where \[\overrightarrow{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \text{ and }\overrightarrow{b} = - \hat{i} + \hat{j} + \hat{k} .\]


If \[\overrightarrow{a} = \hat{i} + \hat{j} , \vec{b} = \hat{j} + \hat{k} \text{ and }\vec{c} = \hat{k} + \hat{i} ,\] write unit vectors parallel to \[\overrightarrow{a} + \overrightarrow{b} - 2 \overrightarrow{c} .\]


If \[\overrightarrow{a} = \hat{i} + 2 \hat{j} , \vec{b} = \hat{j} + 2 \hat{k} ,\] write a unit vector along the vector \[3 \overrightarrow{a} - 2 \overrightarrow{b} .\]


If \[\overrightarrow{a} = x \hat{i} + 2 \hat{j} - z \hat{k}\text{ and }\overrightarrow{b} = 3 \hat{i} - y \hat{j} + \hat{k}\]  are two equal vectors, then write the value of x + y + z.


If \[\vec{a}\text{ and }\vec{b}\] are two collinear vectors, then which of the following are incorrect?


Find the components along the coordinate axes of the position vector of the following point :

R(–11, –9)


The vector `bar"a"` is directed due north and `|bar"a"|` = 24. The vector `bar"b"` is directed due west and `|bar"b"| = 7`. Find `|bar"a" + bar"b"|`.


ABCDEF is a regular hexagon. Show that `bar"AB" + bar"AC" + bar"AD" + bar"AE" + bar"AF" = 6bar"AO"`, where O is the centre of the hexagon.


Express `- hat"i" - 3hat"j" + 4hat"k"` as the linear combination of the vectors `2hat"i" + hat"j" - 4hat"k", 2hat"i" - hat"j" + 3hat"k"` and `3hat"i" + hat"j" - 2hat"k"`


Select the correct option from the given alternatives:

If l, m, n are direction cosines of a line then `"l"hat
"i" + "m"hat"j" + "n"hat"k"` is ______ 


Let `bara = hati - hatj, barb = hatj - hatk, barc = hatk - hati.` If `bard` is a unit vector such that `bara * bard = 0 = [(barb, barc, bard)]`, then `bard` equals ______.


Select the correct option from the given alternatives:

If `bar"a", bar"b", bar"c"` are non-coplanar unit vectors such that `bar"a"xx (bar"b"xxbar"c") = (bar"b"+bar"c")/sqrt2`, then the angle between `bar"a"  "and"  bar"b"` is 


If two sides of a triangle are `hat"i" + 2hat"j" and hat"i" + hat"k"`, find the length of the third side.


ABCD is a parallelogram. E, F are the midpoints of BC and CD respectively. AE, AF meet the diagonal BD at Q and P respectively. Show that P and Q trisect DB.


If ABC is a triangle whose orthocentre is P and the circumcentre is Q, prove that `bar"PA" + bar"PB" + bar"PC" = 2bar"PQ".`


Dot product of a vector with vectors `3hat"i" - 5hat"k",  2hat"i" + 7hat"j" and hat"i" + hat"j" + hat"k"` are respectively -1, 6 and 5. Find the vector.


If a parallelogram is constructed on the vectors `bar"a" = 3bar"p" - bar"q", bar"b" = bar"p" + 3bar"q" and |bar"p"| = |bar"q"| = 2` and angle between `bar"p" and bar"q"` is `pi/3,` and angle between lengths of the sides is `sqrt7 : sqrt13`.


Show that the vector area of a triangle ABC, the position vectors of whose vertices are `bar"a", bar"b" and bar"c"` is `1/2[bar"a" xx bar"b" + bar"b" xx bar"c" + bar"c" xx bar"a"]`.


lf `overlinea` and `overlineb` be two unit vectors and θ is the angle between them, then `|overlinea - overlineb|` is equal to ______


For any vector `overlinex` the value of `(overlinex xx hati)^2 + (overlinex xx hatj)^2 + (overlinex xx hatk)^2` is equal to ______


If the vectors `xhat"i" - 3hat"j" + 7hat"k" and hat"i" + "y"hat"j" - "z"hat"k"` are collinear then the value of `"xy"^2/"z"` is equal.


If the vectors `overlinea = 2hati - qhatj + 3hatk` and `overlineb = 4hati - 5hatj + 6hatk` are collinear, then the value of q is ______


lf `overlinea`, `overlineb` and `overlinec` are unit vectors such that `overlinea + overlineb + overlinec = overline0` and angle between `overlinea` and `overlineb` is `pi/3`, then `|overlinea xx overlineb| + |overlineb xx overlinec| + |overlinec xx overlinea|` = ______ 


Find a unit vector in the direction of `vec"PQ"`, where P and Q have co-ordinates (5, 0, 8) and (3, 3, 2), respectively


If `vec"a"` and `vec"b"` are adjacent sides of a rhombus, then `vec"a" * vec"b"` = 0


`bara, barb` and `barc` are three vectors such that `veca + vecb + vecc` 20,  `|bara| = 1, |barb| = 2` and `|barc| = 3`. Then `bara. barb + barb.barc + bar(c.a)` is equal to


If two or more vectors are parallel to the same line, such vectors are known as:


For given vectors, `veca = 2hati - hatj + 2hatk` and `vecb = - hati + hatj - hatk` find the unit vector in the direction of the vector `veca + vecb`.


Find `|vecx|`, if for a unit vector `veca, (vecx - veca) * (vecx + veca)` = 12


In the triangle PQR, `bar("P""Q")`= `2 bar"a"` and `bar ("QR")` = `2 barb`.The mid - point of PR is M. Find following vector in term of  `bar a ` and `barb.`

  1. `bar("P""R")` 
  2. `bar("P""M")`
  3. `bar("Q""M")`

Check whether the vectors `2 hati + 2 hatj + 3 hatk, -3 hati + 3 hatj + 2 hatk  "and"  3 hati + 4 hatk`  from a triangle or not.


Check whether the vectors `2hati +2hatj+3hatk, -3hati +3hatj +2hatk and 3hati +4hatk` form a triangle or not.


If A(1, 2, – 3) and B(– 1, – 2, 1) are the end points of a vector `vec("AB")` then find the unit vector in the direction of `vec("AB")`.


Check whether the vectors `2hati+2hatj+3hatk,-3hati+3hatj+2hatk` and `3hati+4hatk` form a triangle or not.


Check whether the vectors `2hati+2hatj+3hatk,-3hati+3hatj+2hatk` and `3hati+4hatk` form a triangle or not.


Check whether the vectors `2hati + 2hatj +3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×