Advertisements
Advertisements
प्रश्न
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
उत्तर
Let I = `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`
Take cot–1 x = t
∴ x = cot t
∴ dx = – cosec2 t dt
∴ I = `int e^t ((1 + cot^2 t - cot t)/(1 + cot^2 t))(-"cosec"^2t) dt`
= `int - e^t (("cosec"^2t - cot t))/("cosec"^2t) xx "cosec"^2 t dt`
= `int - e^t ("cosec"^2 t - cot t)dt`
= `int e^t (cot t - "cosec"^2t)dt`
∴ Now, taking f(t) = cot t
Then f'(t) = – cosec2 t
∴ I = `int e^t [f(t) + f^'(t)]dt`
= et f(t) + C
= `e^(cot^(–1)x) |cot (cot^-1 x)| + C`
= `e^(cot^(-1)x) xx x + C`
= `xe^(cot^(–1)x) + C`.
संबंधित प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin 3x.
Integrate the function in `x^2e^x`.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : sec4x cosec2x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate `int 1/(x(x - 1)) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).