Advertisements
Advertisements
प्रश्न
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
उत्तर
Let I = `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`
= `int_(logsqrt(2))^(logsqrt(3)) 1/(((e^(2x) + 1))/e^x xx ((e^(2x) - 1))/e^x) dx`
= `int_(logsqrt(2))^(logsqrt(3)) e^(2x)/((e^(4x) - 1))dx`
Let e2x = t
Then, 2e2x dx = dt
= `int_2^3 dt/(2(t^2 - 1))`
= `1/2 int_2^3 dt/(t^2 - 1^2)`
= `[1/2 xx 1/(2 xx 1) log|(t - 1)/(t + 1)|]_2^3`
= `1/4 [log ((3 - 1)/(3 + 1)) - log ((2 - 1)/(2 + 1))]`
= `1/4 [log 2/4 - log 1/3]`
= `1/4 [log 1/2 + log 3]`
= `1/4 [log 1/2 xx 3]`
= `1/4 log 3/2`.
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Write a value of
Write a value of
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int x/(x + 2) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1))dx`