मराठी

Evaluate ∫log2log31(ex+e-x)(ex-e-x)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.

बेरीज

उत्तर

Let I = `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`

= `int_(logsqrt(2))^(logsqrt(3)) 1/(((e^(2x) + 1))/e^x xx ((e^(2x) - 1))/e^x) dx`

= `int_(logsqrt(2))^(logsqrt(3)) e^(2x)/((e^(4x) - 1))dx`

Let e2x = t

Then, 2e2x dx = dt

= `int_2^3 dt/(2(t^2 - 1))`

= `1/2 int_2^3 dt/(t^2 - 1^2)`

= `[1/2 xx 1/(2 xx 1) log|(t - 1)/(t + 1)|]_2^3`

= `1/4 [log ((3 - 1)/(3 + 1)) - log ((2 - 1)/(2 + 1))]`

= `1/4 [log  2/4 - log  1/3]`

= `1/4 [log  1/2 + log 3]`

= `1/4 [log  1/2 xx 3]`

= `1/4 log  3/2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Outside Delhi Set 1

संबंधित प्रश्‍न

Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`cos sqrt(x)/sqrtx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int cos sqrtx` dx = _____________


Evaluate `int(3x^2 - 5)^2  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×