Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
उत्तर
Let I = `int 1/(sqrt(3"x"^2 + 8))` dx
`int 1/(sqrt((sqrt3"x")^2 + (sqrt8)^2))` dx
`= (log |sqrt3"x" + sqrt((sqrt3"x")^2 + (sqrt8)^2)|)/sqrt3` + c
∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 + 8)|` + c
Alternate method:
Let I = `"I" = int 1/sqrt(3"x"^2 + 8) "dx" = 1/sqrt3 int 1/(sqrt ("x"^2 + 8/3)` dx
`= 1/sqrt3 int 1/sqrt("x"^2 + ((2sqrt2)/sqrt3)^2)` dx
`= 1/sqrt3 log |"x" + sqrt("x"^2 + ((2sqrt2)/sqrt3)^2)| + "c"_1`
`= 1/sqrt3 log |"x" + sqrt("x"^2 + 8/3)| + "c"_1`
`= 1/sqrt3 log |(sqrt3"x" + sqrt(3"x"^2 + 8))/sqrt3| + "c"_1`
`= 1/sqrt3 log|sqrt3"x" + sqrt(3"x"^2 + 8)| - 1/sqrt3 log sqrt3 + "c"_1`
∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 + 8)|` + c
where c = `"c"_1 - 1/sqrt3 log sqrt3`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
`int logx/(log ex)^2*dx` = ______.
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (3"x"^2 - 5)^2` dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int 1/(cos x - sin x)` dx = _______________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int x/(x + 2) "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int sin^-1 x`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
`int (cos x)/(1 - sin x) "dx" =` ______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
`int x^3 e^(x^2) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+x+x^2/(2!))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).