Advertisements
Advertisements
प्रश्न
`int logx/(log ex)^2*dx` = ______.
पर्याय
`x/(1 + log x) + c`
x(1 + log x) + c
`1/(1 + log x) + c`
`1/(1 - log x) + c`
उत्तर
`int logx/(log ex)^2*dx` = `underlinebb(x/(1 + log x) + c)`.
APPEARS IN
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`1/(1 - tan x)`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int sin^-1 x`dx = ?
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
If f'(x) = `x + 1/x`, then f(x) is ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int cos^3x dx` = ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).