Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
उत्तर
Let I = `int ("e"^"x" + "e"^(- "x"))^2 * ("e"^"x" - "e"^(-"x"))`dx
Put `"e"^"x" + "e"^(- "x")` = t
∴ `"e"^"x" - "e"^(- "x")`dx = dt
∴ I = `int "t"^2 . "dt"`
∴ I = `(t^(2 + 1))/(2 + 1) + c`
∴ I = `(t^3)/(3) + c`
∴ I = `[("e"^"x" + "e"^(- "x"))^3]/(3) + c`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(1 - tan x)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate `int 1/((2"x" + 3))` dx
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1+x+x^2/(2!))dx`