Advertisements
Advertisements
प्रश्न
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
उत्तर
Let I = `int sqrt((x-1)/(sqrt(x^2 - x))) dx`
`:. x - 1 = A d/dx (x^2- x) + B`
`x - 1 = A(2x -1) + B`
`1 = 2A => A = 1/2`
`-1 = -A+B => -1 = (-1)/2 + B => B = (-1)/2`
`I = int (1/2 (2x - 1)dx)/(sqrt(x^2 - x)) dx - int 1/2 dx/(sqrt(x^2 - x)) dx`
`= int (1/2 (2x-1)dx)/(sqrt(x^2-x)) - 1/2 int (dx)/(sqrt((x - 1/2)^2 - (1/2)^2))`
`= 1/2 xx 2sqrt(x^2 - x) - 1/2 xx log|(x - 1/2) + sqrt((x- 1/2)^2 - (1/2)^2)| +C`
`= sqrt(x^2 - x) -1/2 log |x - 1/2 + sqrt(x^2 - x)| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int cos sqrtx` dx = _____________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int 1/(xsin^2(logx)) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`