Advertisements
Advertisements
प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
उत्तर
Let I = `int 1/(cos^4x+sin^4x) dx`
Divide numerator and denominator by cos4x, we get:
`int [sec^4x]/[1 + tan^4x]` dx
`int [sec^2 x(sec^2x)]/[ 1 + tan^4x ]` dx
`int [sec^2 x( 1 + tan^2 x)]/( 1 + tan^4x )`dx
Putting tan x = t,
Sec2x dx = dt
I = `int ( 1 + t^2)/(1+ t^4) dt`
Dividing the numerator and denominator by t2, we get:
I = `int [ 1 + t^(1/2) ]/[ t^(1/2) + t^2 ]`
I = `int [ 1 + 1/t^2]/[(t - 1/t)^2 + 2]` dt
Let t - `1/t` = u
`1 + 1/t^2 = (du)/dt`
`( 1 + 1/t^2) dt = du`
I = `1/sqrt2 tan^-1 (u/sqrt2) + C`
I = `1/sqrt2 tan^-1 (( t - 1/t )/sqrt2) + C`
I = `1/sqrt2 tan^-1 ((t^2 - 1)/(sqrt2t)) + C`
I = `1/sqrt2 tan^-1 ( tan^2x - 1)/(sqrt2tan x ) + C`.
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int cot^2x "d"x`
`int(log(logx))/x "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.