Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \sqrt{4 x^2 - 5}\text{ dx}\]
\[ = \int \sqrt{4\left( x^2 - \frac{5}{4} \right)} \text{ dx}\]
\[ = 2\int \sqrt{x^2 - \left( \frac{\sqrt{5}}{2} \right)^2} \text{ dx}\]
\[ = 2\left[ \frac{x}{2}\sqrt{x^2 - \frac{5}{4}} - \frac{5}{8}\text{ ln }\left| x + \sqrt{x^2 - \frac{5}{4}} \right| \right] + C \left[ \because \int\sqrt{x^2 - a^2} \text{ dx}= \frac{1}{2}x\sqrt{x^2 - a^2} - \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = x \sqrt{x^2 - \frac{5}{4}} - \frac{5}{4}\text{ ln }\left| x + \sqrt{x^2 - \frac{5}{4}} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate `int 1/((2"x" + 3))` dx
`int (log x)/(log ex)^2` dx = _________
`int sqrt(1 + sin2x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int(log(logx))/x "d"x`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int (logx)^2/x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`