Advertisements
Advertisements
प्रश्न
Evaluate `int 1/("x" ("x" - 1))` dx
उत्तर
Let I = `int 1/("x" ("x" - 1))` dx
`= int ("x" - "x" + 1)/("x"("x" - 1))` dx
`= int ("x" - ("x" - 1))/("x"("x" - 1))` dx
`= int (1/("x" - 1) - 1/"x")` dx
`= int 1/("x" - 1) "dx" - int 1/"x" "dx"`
`= log |"x" - 1| - log |"x"| + "c"`
∴ I = log `|("x" - 1)/"x"| + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int(log(logx))/x "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).