Advertisements
Advertisements
प्रश्न
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
उत्तर
Let I = `int (5x^2 - 6x + 3)/(2x − 3)` dx
We perform actual division and express the result as:
`"Dividend"/"Divisor" = "Quotient" + "Remainder"/"Divisor"`
`(5x)/2 + 3/4`
`2x - 3)overline(5x^2 - 6x + 3)`
`- 5x^2 - 15/2x`
(−) (+)
`(3x)/2 + 3`
`- (3x)/2 - 9/4`
(−) (+)
`21/4`
∴ I = `int ((5x)/2 + 3/4 + (21/4)/(2x - 3))` dx
∴ I = `5/2 int x "dx" + 3/4 int "dx" + 21/4 int 1/(2x - 3) "dx"`
∴ I = `5/2 * "x"^2/2 + 3/4"x" + 21/4 * (log |2"x" - 3|)/2 + c`
∴ I = `(5x^2)/4 + (3x)/4 + 21/8 log |2"x" - 3| + c`
APPEARS IN
संबंधित प्रश्न
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`sqrt(ax + b)`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
`int sqrt(1 + "x"^2) "dx"` =
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int (logx)^2/x dx` = ______.