Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
Let I= elog sin x . cos x dx
⇒ cos x dx = dt
\[= \frac{t^2}{2} + C\]
\[ = \frac{\sin^2 x}{2} + C \left( \because t = \sin x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`sin x/(1+ cos x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Evaluate the following integrals : `int sin x/cos^2x dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int (3"x"^2 - 5)^2` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int 1/((2"x" + 3))` dx
`int (sin4x)/(cos 2x) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`