मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫(logx)2.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int (logx)2.dx`

बेरीज

उत्तर

Let I = `int (logx)^2.dx`
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int t^2e^t dt`

= `t^2 int e^t dt - int [d/dx(t^2) int e^t - dt]dt`

= `t^2e^t - int 2te^t dt`

= `t^2e^t - 2[t int e^t dt - int {d/dt (t) int e^t dt}dt]`

= `t^2e^t - 2[te^t - int 1.e^t dt]`
= `t^2e^t - 2te^t + 2e^t + c`
= `e^t[t^2 - 2t + 2] + c`
= x[(log x)2 – 2(log x) + 2] + c.
Alternative Method :
Let I = `int (logx)^2.dx`

= `int (logx)^2. 1dx`

= `(logx)^2 int1.dx - int[d/dx (logx)^2.int1.dx].dx`

= `(logx)^2.x - int 2logx.d/dx(logx).xdx`

= `x(logx)^2 - int 2logx xx 1/x xx x.dx`

= `x(logx)^2 - 2 int (logx).1dx`

= `x(logx)2 - 2[(logx) int 1.dx - int {d/dx (logx) int 1.dx}.dx]`

= `x(logx)^2 - 2[(logx)x - int1/x xx x.dx`

= `x(logx) - 2x(logx) + 2 int 1.dx`

= `x(logx)^2 - 2x(logx) + 2x + c`

= `x[(logx)^2 - 2(logx) + 2] + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 1.06 | पृष्ठ १३७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

cot x log sin x


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`1/(1 - tan x)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int \log_e x\ dx\].

 


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int sqrt(1 + sin2x)  "d"x`


`int logx/x  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int(log(logx))/x  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int dx/(1 + e^-x)` = ______


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int (logx)^2/x dx` = ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×