Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (logx)2.dx`
उत्तर
Let I = `int (logx)^2.dx`
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int t^2e^t dt`
= `t^2 int e^t dt - int [d/dx(t^2) int e^t - dt]dt`
= `t^2e^t - int 2te^t dt`
= `t^2e^t - 2[t int e^t dt - int {d/dt (t) int e^t dt}dt]`
= `t^2e^t - 2[te^t - int 1.e^t dt]`
= `t^2e^t - 2te^t + 2e^t + c`
= `e^t[t^2 - 2t + 2] + c`
= x[(log x)2 – 2(log x) + 2] + c.
Alternative Method :
Let I = `int (logx)^2.dx`
= `int (logx)^2. 1dx`
= `(logx)^2 int1.dx - int[d/dx (logx)^2.int1.dx].dx`
= `(logx)^2.x - int 2logx.d/dx(logx).xdx`
= `x(logx)^2 - int 2logx xx 1/x xx x.dx`
= `x(logx)^2 - 2 int (logx).1dx`
= `x(logx)2 - 2[(logx) int 1.dx - int {d/dx (logx) int 1.dx}.dx]`
= `x(logx)^2 - 2[(logx)x - int1/x xx x.dx`
= `x(logx) - 2x(logx) + 2 int 1.dx`
= `x(logx)^2 - 2x(logx) + 2x + c`
= `x[(logx)^2 - 2(logx) + 2] + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`1/(1 - tan x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int \log_e x\ dx\].
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int sqrt(1 + sin2x) "d"x`
`int logx/x "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int(log(logx))/x "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int dx/(1 + e^-x)` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int (logx)^2/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`