मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : ∫13+2sinx.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`

बेरीज

उत्तर

Let I = `int (1)/(3 + 2sinx).dx`

Put `tan (x/2) = t`

∴ x = 2 tan–1 t

∴ dx = `(2t)/(1 + t^2) and sinx = (2t)/(1 + t^2)`

∴ I = `int (1)/(3 + 2((2t)/(1  +  t^2))).(2dt)/(1 + t^2)`

= `int (1 + t^2)/(3 + 3t^2 + 4t).(2dt)/(1 + t^2)`

= `2 int (1)/(3t^2 + 4t + 3)dt`

= `(2)/(3) int (1)/(t^2 + 4/3t + 1)dt`

= `(2)/(3) int (1)/((t^2 + 4/3t + 4/9) - (4)/(9) + 1)dt`

= `(2)/(3) int (1)/((t + 2/3)^2 + (sqrt(5)/3)^2)dt`

= `(2)/(3) xx (1)/((sqrt(5)/3))tan^-1 [(t + 2/3)/(sqrt(5)/(3))] + c`

= `(2)/sqrt(5)tan^-1 ((3t + 2)/sqrt(5)) + c`

= `(2)/sqrt(5)tan^-1 [(3tan(x/2) + 2)/sqrt(5)] + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 2.1 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

cot x log sin x


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(1+ log x)^2/x`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int x \sin^3 x\ dx\]

Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


`int sin^-1 x`dx = ?


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int cos^3x  dx` = ______.


`int (logx)^2/x dx` = ______.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×