Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
उत्तर
Let I = `int (1)/(3 + 2sinx).dx`
Put `tan (x/2) = t`
∴ x = 2 tan–1 t
∴ dx = `(2t)/(1 + t^2) and sinx = (2t)/(1 + t^2)`
∴ I = `int (1)/(3 + 2((2t)/(1 + t^2))).(2dt)/(1 + t^2)`
= `int (1 + t^2)/(3 + 3t^2 + 4t).(2dt)/(1 + t^2)`
= `2 int (1)/(3t^2 + 4t + 3)dt`
= `(2)/(3) int (1)/(t^2 + 4/3t + 1)dt`
= `(2)/(3) int (1)/((t^2 + 4/3t + 4/9) - (4)/(9) + 1)dt`
= `(2)/(3) int (1)/((t + 2/3)^2 + (sqrt(5)/3)^2)dt`
= `(2)/(3) xx (1)/((sqrt(5)/3))tan^-1 [(t + 2/3)/(sqrt(5)/(3))] + c`
= `(2)/sqrt(5)tan^-1 ((3t + 2)/sqrt(5)) + c`
= `(2)/sqrt(5)tan^-1 [(3tan(x/2) + 2)/sqrt(5)] + c`.
APPEARS IN
संबंधित प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Write a value of
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int sin^-1 x`dx = ?
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int cos^3x dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`