Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
उत्तर
Let I = `int sqrt((9 - x)/x).dx`
= `int sqrt((9 - x)/x.(9 - x)/(9 - x)).dx`
= `int (9 - x)/sqrt(9x - x^2).dx`
Let 9 – x = `"A"[d/dx (9x - x^2)] + "B"`
= A(9 – 2x) + B
∴ 9 – x = (9A + B) – 2Ax
Comparing the coefficient of x and constant on both the sides, we get
– 2A = – 1 and 9A + B = 9
∴ `"A" = (1)/(2) and 9(1/2) + "B"` = 9
∴ B = `(9)/(2)`
∴ 9 – x = `(1)/(2)(9 - 2x) + (9)/(2)`
∴ I = `int (1/2(9 - 2x) + 9/2)/sqrt(9x - x^2).dx`
= `(1)/(2) int (9 - 2x)/sqrt(9x - x^2).dx + (9)/(2) int (1)/sqrt(9x - x^2).dx`
= `(1)/(2)"I"_1 + (9)/(2)"I"_2`
In I1, put 9x – x2 = t
∴ (9 – 2x)dx = dt
∴ I1 = `int (1)/sqrt(t)dt`
= `intt^(-1/2)dt`
= `t^(1/2)/(1/2) + c_1`
= `2sqrt(9x - x^2) + c_1`
I2 = `int(1)/sqrt(81/4 - (x^2 - 9x + 81/4)).dx`
= `int (1)/sqrt((9/2)^2 - (x - 9/2)^2).dx`
= `sin^-1((x - 9/2)/(9/2)) + c_2`
== `sin^-1((2x - 9)/9) + c_2`
∴ I = `sqrt(9x - x^2) + (9)/(2) sin^-1((2x - 9)/9) + c`, where c = c1 + c2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int "x" * "e"^"2x"` dx
`int 1/(cos x - sin x)` dx = _______________
`int cos^7 x "d"x`
`int(log(logx))/x "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int 1/(sinx.cos^2x)dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int (1+x+x^2/(2!))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate `int 1/(x(x-1)) dx`