Advertisements
Advertisements
प्रश्न
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
उत्तर
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = `underline(1/3)`
Explanation:
Let I = `int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" * (log "x")^3` + c
I = `int 1/"x"^3 [log "x"^"x"]^2 "dx" = int 1/"x"^3 ("x log x")^2 * "dx"`
`=int 1/"x"^3 * "x"^2 * (log "x")^2 "dx" = int 1/"x" (log "x")^2 * "dx"`
∴ Put log x = t
∴ `1/"x"` dx = dt
∴ I = `int "t"^2 * "dt"`
`= "t"^3/3 + "c"`
`= 1/3 (log "x")^3 + "c"`
∴ P = `1/3`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`1/(1 + cot x)`
Write a value of
Write a value of
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
`int (log x)/(log ex)^2` dx = _________
`int(log(logx))/x "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int x^3 e^(x^2) dx`
Evaluate `int1/(x(x-1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int1/(x(x - 1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).