Advertisements
Advertisements
प्रश्न
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
उत्तर
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is 1 + log x = t.
APPEARS IN
संबंधित प्रश्न
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
`int (sin4x)/(cos 2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate:
`int sin^2(x/2)dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`