मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Choose the correct options from the given alternatives : ∫dxcosxsin2x-cos2x⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =

पर्याय

  • `log(tanx - sqrt(tan^2x - 1)) + c`

  • sin–1 (tan x) + c

  • 1 + sin–1 (cot x) + c

  • `log(tanx + sqrt(tan^2x - 1)) + c`

MCQ

उत्तर

`log(tanx + sqrt(tan^2x - 1)) + c`

[ Hint : `int dx/(cosxsqrt(sin^2x - cos^2x)`

= `int (sec2x*dx)/sqrt(tan2x - 1)`     ...[Dividing by cos2x]
Put tan x = t].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १४९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.16 | पृष्ठ १४९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate :`intxlogxdx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`(1+ log x)^2/x`


`int (dx)/(sin^2 x cos^2 x)` equals:


\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int cos sqrtx` dx = _____________


`int (sin4x)/(cos 2x) "d"x`


`int logx/x  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int(5x + 2)/(3x - 4) dx` = ______


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Write `int cotx  dx`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate `int 1/(x(x-1))dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×