Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^x \sqrt{e^{2x} + 1} \text{ dx}\]
\[\text{ Putting}\ e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int \sqrt{t^2 + 1}\text{ dt}\]
\[ = \frac{t}{2}\sqrt{t^2 + 1} + \frac{1^2}{2}\text{ ln } \left| t + \sqrt{t^2 + 1} \right| + C \left[ \because \int\sqrt{x^2 + a^2}\text{ dx } = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}\text{ ln }\left| x + \sqrt{x^2 + a^2} \right| + C \right] \]
\[ = \frac{e^x}{2} \sqrt{e^{2x} + 1} + \frac{1}{2}\text{ ln }\left| e^x + \sqrt{e^{2x} + 1} \right| + C \left( \because t = e^x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Write a value of\[\int \log_e x\ dx\].
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (sin4x)/(cos 2x) "d"x`
`int cot^2x "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
Write `int cotx dx`.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`