हिंदी

∫ E X √ E 2 X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]
योग

उत्तर

\[\text{ Let I } = \int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\text{ Putting}\ e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int \sqrt{t^2 + 1}\text{ dt}\]
\[ = \frac{t}{2}\sqrt{t^2 + 1} + \frac{1^2}{2}\text{ ln } \left| t + \sqrt{t^2 + 1} \right| + C \left[ \because \int\sqrt{x^2 + a^2}\text{ dx } = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}\text{ ln }\left| x + \sqrt{x^2 + a^2} \right| + C \right] \]
\[ = \frac{e^x}{2} \sqrt{e^{2x} + 1} + \frac{1}{2}\text{ ln }\left| e^x + \sqrt{e^{2x} + 1} \right| + C \left( \because t = e^x \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.28 [पृष्ठ १५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.28 | Q 6 | पृष्ठ १५४

संबंधित प्रश्न

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Integrate the functions:

`x/(e^(x^2))`


Evaluate: `int 1/(x(x-1)) dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


`int logx/(log ex)^2*dx` = ______.


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int x/(x + 2)  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int1/(x(x - 1))dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate `int (1)/(x(x - 1))dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate `int(1+x+x^2/(2!))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×