Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
उत्तर
Let I = `int (1)/(2sin 2x - 3)dx`
Put tan x = t
∴ x = tan–1 t
∴ dx = `dt/(1 + t^2) and sin 2x = (2t)/(1 + t^2)`
∴ I = `int(1)/(2((2t)/(1 + t^2)) - 3).dt/(1 + t^2)`
= `int (1 + t^2)/(4t - 3 - 3t^2).dt/(1 + t^2)`
= `int (1)/(-3t^2 + 4t - 3)dt`
= `(1)/(3) int (1)/(t^2 - 4/3t + 1)dt`
= `-(1)/(3) int (1)/((t^2 - 4/3t + 4/9) - (4)/(9) + 1)dt`
= `-(1)/(3) int (1)/((t - 2/3)^2 + (sqrt(5)/3)^2)dt`
= `-(1)/(3) xx (1)/((sqrt(5)/3))tan^-1 ((t - 2/3)/(sqrt(5)/3)) + c`
= `-(1)/sqrt(5)tan^-1 ((3t - 2)/sqrt(5)) + c`
= `-(1)/sqrt(5)tan^-1((3tan x - 2)/(sqrt(5))) + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Write a value of
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int cos sqrtx` dx = _____________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int x/(x + 2) "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`int sin^2(x/2)dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`