हिंदी

Evaluate the following integrals : ∫cos2xsin2xdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 

योग

उत्तर

`int (cos2x)/sin^2x dx`

= `int((1 - 2sin^2x))/sin^2x  dx`

= `int(1/sin^2x - (2sin^2x)/sin^2x)dx`

= `int "cosec"^2x  dx - 2 int dx`

= – cot x – 2x + c.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.1 [पृष्ठ १०२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.1 | Q 2.04 | पृष्ठ १०२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`sin x/(1+ cos x)`


Solve: dy/dx = cos(x + y)


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Evaluate: `int "e"^sqrt"x"` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int 1/(xsin^2(logx))  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int cos^3x  dx` = ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate:

`int sin^3x cos^3x  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×