Advertisements
Advertisements
प्रश्न
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
विकल्प
`2sqrt(1 - x) + "c"`
`-2sqrt(1 - x) + "c"`
`sqrtx + "c"`
x + c
उत्तर
The value of `int ("d"x)/(sqrt(1 - x)) "is" underlinebb(-2sqrt(1 - x) + c)`.
Explanation:
`int ("dx")/(sqrt(1 - x)) = int(1 - x)^((-1)/2)"dx"`
= `((1 - x)^((-1)/(2 + 1)))/(1/2) xx 1/("d"/("dx") (1 - x)) + "c"`
= `-2(1 - x)^(1/2) + "c"`
= `-2 sqrt(1 - x) + "c"`
APPEARS IN
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
sec2(7 – 4x)
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int1/(4 + 3cos^2x)dx` = ______
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
Evaluate `int(1 + x + x^2 / (2!))dx`