Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
उत्तर
I = `int (1)/(25 - 9x^2)*dx`
= `int(1)/(5^2 - (3x)^2)*dx`
= `(1)/(2(5))log |(5 + 3x)/(5 - 3x)|*(1)/(3) + c`
= `(1)/(30)log |(5 + 3x)/(5 - 3x)| + c`
Alternative Method:
`int (1)/(25 - 9x^2)*dx`
= `(1)/(9) int (1)/((25)/(9)x^2)*dx`
= `(1)/(9) int (1)/((5/3)^2 - x^2)*dx`
= `(1)/(9) xx (1)/(2 xx 5/3)log|(5/3 + x)/(5 / 3 - x)|+ c`
= `(1)/(30)log|(5 + 3x)/(5 - 3x)| + c`
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of
Write a value of
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: `int "e"^sqrt"x"` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int (log x)/(log ex)^2` dx = _________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int sqrt(1 + sin2x) "d"x`
`int (sin4x)/(cos 2x) "d"x`
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int1/(4 + 3cos^2x)dx` = ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Write `int cotx dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
`int x^3 e^(x^2) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`