हिंदी

Evaluate the following: ∫125-9x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int (1)/(25 - 9x^2)*dx`

मूल्यांकन

उत्तर

I = `int (1)/(25 - 9x^2)*dx`

= `int(1)/(5^2 - (3x)^2)*dx`

= `(1)/(2(5))log |(5 + 3x)/(5 - 3x)|*(1)/(3) + c`

= `(1)/(30)log |(5 + 3x)/(5 - 3x)| + c`

Alternative Method:

`int (1)/(25 - 9x^2)*dx`

= `(1)/(9) int (1)/((25)/(9)x^2)*dx`

= `(1)/(9) int (1)/((5/3)^2 - x^2)*dx`

= `(1)/(9) xx (1)/(2 xx 5/3)log|(5/3 + x)/(5 / 3 - x)|+ c`

= `(1)/(30)log|(5 + 3x)/(5 - 3x)| + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.02 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate: `int "e"^sqrt"x"` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int (log x)/(log ex)^2` dx = _________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int sqrt(1 + sin2x)  "d"x`


`int (sin4x)/(cos 2x) "d"x`


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int1/(4 + 3cos^2x)dx` = ______ 


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Write `int cotx  dx`.


`int secx/(secx - tanx)dx` equals ______.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


`int x^3 e^(x^2) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×