Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \sqrt{1 + x - 2 x^2} \text{ dx}\]
\[ = \int \sqrt{2\left( \frac{1}{2} + \frac{x}{2} - x^2 \right)} \text{ dx}\]
\[ = \sqrt{2} \int\sqrt{\frac{1}{2} - \left( x^2 - \frac{x}{2} \right)} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\frac{1}{2} - \left( x^2 - \frac{x}{2} + \frac{1}{4^2} - \frac{1}{4^2} \right)} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\frac{1}{2} + \frac{1}{16} - \left( x - \frac{1}{4} \right)^2} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\left( \frac{3}{4} \right)^2 - \left( x - \frac{1}{4} \right)^2} \text{ dx}\]
\[ = \sqrt{2} \left[ \left( \frac{x - \frac{1}{4}}{2} \right) \sqrt{\left( \frac{3}{4} \right)^2 - \left( x - \frac{1}{4} \right)^2} + \frac{9}{32} \sin^{- 1} \left( \frac{x - \frac{1}{4}}{\frac{3}{4}} \right) \right] + C \left[ \because \int\sqrt{a^2 - x^2}\text{ dx} = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{4x - 1}{8} \right) \sqrt{1 + x - 2 x^2} + \frac{9\sqrt{2}}{32} \sin^{- 1} \left( \frac{4x - 1}{3} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(1 + cot x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int \log_e x\ dx\].
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
Evaluate `int(3x^2 - 5)^2 "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int cos^3x dx` = ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int1/(x(x - 1))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).