Advertisements
Advertisements
प्रश्न
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
उत्तर
`int (1 + "x" + "x"^2/(2!))`dx
`= int 1 "dx" + int "x" "dx" + 1/(2!) int "x"^2 "dx"`
`= "x" + "x"^2/2 + 1/(2!) xx "x"^3/3 + "c"`
∴ `"x" + "x"^2/2 + "x"^3/6 + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int1/(x^2+4x-5) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int 1/(x(x-1)) dx`