Advertisements
Advertisements
प्रश्न
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
उत्तर
Let I = `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
`= -2 int 1/(sqrt("5x" - 4) - sqrt("5x" - 2)) xx (sqrt("5x" - 4) + sqrt("5x" - 2))/(sqrt("5x" - 4) + sqrt("5x" - 2))`dx
`= - 2 int (sqrt("5x" - 4) + sqrt("5x" - 2))/(("5x" - 4) - ("5x" - 2))` dx
`= -2 int (sqrt("5x" - 4) + sqrt("5x" - 2))/-2` dx
`= int [("5x" - 4)^(1/2) + ("5x" - 2)^(1/2)]`dx
`= int ("5x" - 4)^(1/2) "dx" + int ("5x" - 2)^(1/2)` dx
`= ("5x" - 4)^(3/2)/(3/2) xx 1/5 + ("5x" - 2)^(3/2)/(3/2) xx 1/5` + c
∴ I = `2/15 [("5x" - 4)^(3/2) + ("5x" - 2)^(3/2)]` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sec2(7 – 4x)
Evaluate: `int (sec x)/(1 + cosec x) dx`
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`