Advertisements
Advertisements
प्रश्न
Evaluate: `int (sec x)/(1 + cosec x) dx`
उत्तर
`I = int (sec x)/(1 + cosec x) dx`
`I = int (1/cos x)/((sin x + 1)/sin x) dx`
`I = int 1/(cos x) xx (sinx)/(1+ sin x) dx`
`I = int (tan x)/(1+sin x) dx`
`I = int (tan x)/(cos^2 x) (1- sin x)dx`
Put tan x = t
`sec^2 x dx = dt`
`= intt (1 - t/(sqrt(1+t^2)))dt`
`= int t dt - int t^2/sqrt(1+t^2) dt`
Let `I _1 = int t^2/sqrt(1 + t^2) dt`
`= t^2/2 - int [(1 + t^2 -1)/sqrt(1 + t^2)]dt`
`I_1 = int [sqrt(1+t^2) - 1/sqrt(1 + t^2)] dt`
`I_1 = 1/2 tsqrt(1 + t^2) + 1/2 log |t + sqrt(1 + t^2)| - log |t + sqrt(1 + t^2)| + c`
`I_1 = 1/2 tan x sqrt(1 + tan^2x) + 1/2 log |tan x + sqrt(1+tan^2 x)| - log |tan x + sec x|+ c`
`:. I = t^2/2 - [1/2 tan x . sec x + 1/2 log |tanx + sec x| - log |tanx + sec x| + C]`
`:. I = (tan^2x)/2 - 1/2 tan x . sec x + 1/2 log |tan x + sec x| + c`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
`int logx/(log ex)^2*dx` = ______.
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int dx/(1 + e^-x)` = ______
If f'(x) = `x + 1/x`, then f(x) is ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int(1+x+x^2/(2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).