हिंदी

Evaluate: `Int (Sec X)/(1 + Cosec X) Dx` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int (sec x)/(1 + cosec x) dx`

उत्तर

`I = int (sec x)/(1 + cosec x) dx`

`I = int  (1/cos x)/((sin x + 1)/sin x) dx`

`I = int  1/(cos x) xx (sinx)/(1+ sin x) dx`

`I = int (tan x)/(1+sin x) dx`

`I = int (tan x)/(cos^2 x) (1- sin x)dx`

Put tan x = t

`sec^2 x dx = dt`

`= intt (1 - t/(sqrt(1+t^2)))dt`

`= int t dt - int  t^2/sqrt(1+t^2) dt` 

Let `I _1 = int t^2/sqrt(1 + t^2) dt`

`= t^2/2 - int [(1 + t^2 -1)/sqrt(1 + t^2)]dt`

`I_1 = int [sqrt(1+t^2) - 1/sqrt(1 + t^2)] dt`

`I_1 = 1/2 tsqrt(1 + t^2) + 1/2 log |t + sqrt(1 + t^2)| - log |t + sqrt(1 + t^2)| + c`

`I_1 = 1/2 tan x sqrt(1 + tan^2x) + 1/2  log |tan x + sqrt(1+tan^2 x)| - log |tan x + sec x|+ c`

`:. I = t^2/2 - [1/2 tan x . sec x + 1/2 log |tanx + sec x| - log |tanx + sec x|  + C]`

`:. I = (tan^2x)/2 - 1/2 tan x . sec x +  1/2  log |tan x +  sec x| + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`(1+ log x)^2/x`


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


`int logx/(log ex)^2*dx` = ______.


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int dx/(1 + e^-x)` = ______


If f'(x) = `x + 1/x`, then f(x) is ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int(1+x+x^2/(2!))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×